These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 29635036)

  • 21. How the pterosaur got its wings.
    Tokita M
    Biol Rev Camb Philos Soc; 2015 Nov; 90(4):1163-78. PubMed ID: 25361444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detailed analysis of the prothoracic tissues transforming into wings in the Cephalothorax mutants of the Tribolium beetle.
    Clark-Hachtel CM; Moe MR; Tomoyasu Y
    Arthropod Struct Dev; 2018 Jul; 47(4):352-361. PubMed ID: 29913217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Life history, systematics and flight ability of the Early Permian stem-mayflies in the genus Misthodotes Sellards, 1909 (Insecta, Ephemerida, Permoplectoptera).
    Sroka P; Godunko RJ; Sinitshenkova ND; Prokop J
    BMC Ecol Evol; 2021 May; 21(1):97. PubMed ID: 34024284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Revision of the Scytinopteridae (Hemiptera: Cicadomorpha: Scytinopteroidea) of the Queensland Triassic.
    Lambkin KJ
    Zootaxa; 2016 Jun; 4117(4):580-90. PubMed ID: 27395195
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Micro-morphological adaptations of the wing nodus to flight behaviour in four dragonfly species from the family Libellulidae (Odonata: Anisoptera).
    Rajabi H; Stamm K; Appel E; Gorb SN
    Arthropod Struct Dev; 2018 Jul; 47(4):442-448. PubMed ID: 29339328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and evolution of the stigmapophysis-A unique repose wing-coupling structure in Psocodea.
    Ogawa N; Yoshizawa K
    Arthropod Struct Dev; 2018 Jul; 47(4):416-422. PubMed ID: 29932971
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Is there a relationship between the morphology of the forewing axillary sclerites and the way the wing folds in aphids (Aphidomorpha, Sternorrhyncha, Hemiptera)?
    Franielczyk-Pietyra B; Bernas T; Sas-Nowosielska H; Wegierek P
    Zoomorphology; 2018; 137(1):105-117. PubMed ID: 29568155
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Soft-tissue and dermal arrangement in the wing of an Early Cretaceous bird: Implications for the evolution of avian flight.
    Navalón G; Marugán-Lobón J; Chiappe LM; Luis Sanz J; Buscalioni ÁD
    Sci Rep; 2015 Oct; 5():14864. PubMed ID: 26440221
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flight adaptations in Palaeozoic Palaeoptera (Insecta).
    Wootton RJ; Kukalová-Peck J
    Biol Rev Camb Philos Soc; 2000 Feb; 75(1):129-67. PubMed ID: 10740895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.
    Cespedes A; Penz CM; DeVries PJ
    J Anim Ecol; 2015 May; 84(3):808-816. PubMed ID: 25484251
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Male postabdomen reveals ancestral traits of Megasecoptera among winged insects.
    Prokop J; Pecharová M; Sinitshenkova ND; Klass KD
    Arthropod Struct Dev; 2020 Jul; 57():100944. PubMed ID: 32361571
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Homologization of the flight musculature of zygoptera (insecta: odonata) and neoptera (insecta).
    Büsse S; Genet C; Hörnschemeyer T
    PLoS One; 2013; 8(2):e55787. PubMed ID: 23457479
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The identification of concerted convergence in insect heads corroborates palaeoptera.
    Blanke A; Greve C; Wipfler B; Beutel RG; Holland BR; Misof B
    Syst Biol; 2013 Mar; 62(2):250-63. PubMed ID: 23179601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Beyond the wing planform: morphological differentiation between migratory and nonmigratory dragonfly species.
    Suárez-Tovar CM; Sarmiento CE
    J Evol Biol; 2016 Apr; 29(4):690-703. PubMed ID: 26779975
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The function of resilin in honeybee wings.
    Ma Y; Ning JG; Ren HL; Zhang PF; Zhao HY
    J Exp Biol; 2015 Jul; 218(Pt 13):2136-42. PubMed ID: 25987733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The soft tissue of Jeholopterus (Pterosauria, Anurognathidae, Batrachognathinae) and the structure of the pterosaur wing membrane.
    Kellner AW; Wang X; Tischlinger H; de Almeida Campos D; Hone DW; Meng X
    Proc Biol Sci; 2010 Jan; 277(1679):321-9. PubMed ID: 19656798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The flight of pterosaurs].
    Koroljov AV
    Zh Obshch Biol; 2016; 77(3):182-238. PubMed ID: 30024133
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparative morphology of the forewing base articulation in Sternorrhyncha compared with a representative of Fulgoromorpha (Insecta, Hemiptera).
    Franielczyk B; Wegierek P
    Zoomorphology; 2016; 135():89-101. PubMed ID: 26893533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui.
    Chatterjee S; Templin RJ
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1576-80. PubMed ID: 17242354
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kinematic compensation for wing loss in flying damselflies.
    Kassner Z; Dafni E; Ribak G
    J Insect Physiol; 2016 Feb; 85():1-9. PubMed ID: 26598807
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.