These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 29635098)
1. Evolution of phosphotriesterase activities of the metallo-β-lactamase family: A theoretical study. Zhang H; Yang L; Yan LF; Liao RZ; Tian WQ J Inorg Biochem; 2018 Jul; 184():8-14. PubMed ID: 29635098 [TBL] [Abstract][Full Text] [Related]
2. Hydrolysis of organophosphate esters: phosphotriesterase activity of metallo-beta-lactamase and its functional mimics. Tamilselvi A; Mugesh G Chemistry; 2010 Aug; 16(29):8878-86. PubMed ID: 20575118 [TBL] [Abstract][Full Text] [Related]
3. Evolutionary insights into the active-site structures of the metallo-β-lactamase superfamily from a classification study with support vector machine. Wang L; Yang L; Feng YL; Zhang H J Biol Inorg Chem; 2020 Oct; 25(7):1023-1034. PubMed ID: 32945939 [TBL] [Abstract][Full Text] [Related]
4. Theoretical study of the phosphotriesterase reaction mechanism. Chen SL; Fang WH; Himo F J Phys Chem B; 2007 Feb; 111(6):1253-5. PubMed ID: 17253743 [TBL] [Abstract][Full Text] [Related]
5. Switching a newly discovered lactonase into an efficient and thermostable phosphotriesterase by simple double mutations His250Ile/Ile263Trp. Luo XJ; Kong XD; Zhao J; Chen Q; Zhou J; Xu JH Biotechnol Bioeng; 2014 Oct; 111(10):1920-30. PubMed ID: 24771278 [TBL] [Abstract][Full Text] [Related]
6. Evolution in the amidohydrolase superfamily: substrate-assisted gain of function in the E183K mutant of a phosphotriesterase-like metal-carboxylesterase. Mandrich L; Manco G Biochemistry; 2009 Jun; 48(24):5602-12. PubMed ID: 19438255 [TBL] [Abstract][Full Text] [Related]
7. Shared promiscuous activities and evolutionary features in various members of the amidohydrolase superfamily. Roodveldt C; Tawfik DS Biochemistry; 2005 Sep; 44(38):12728-36. PubMed ID: 16171387 [TBL] [Abstract][Full Text] [Related]
8. The reaction mechanism of paraoxon hydrolysis by phosphotriesterase from combined QM/MM simulations. Wong KY; Gao J Biochemistry; 2007 Nov; 46(46):13352-69. PubMed ID: 17966992 [TBL] [Abstract][Full Text] [Related]
9. Role of zinc content on the catalytic efficiency of B1 metallo beta-lactamases. Dal Peraro M; Vila AJ; Carloni P; Klein ML J Am Chem Soc; 2007 Mar; 129(10):2808-16. PubMed ID: 17305336 [TBL] [Abstract][Full Text] [Related]
10. Structure of a Novel Phosphotriesterase from Sphingobium sp. TCM1: A Familiar Binuclear Metal Center Embedded in a Seven-Bladed β-Propeller Protein Fold. Mabanglo MF; Xiang DF; Bigley AN; Raushel FM Biochemistry; 2016 Jul; 55(28):3963-74. PubMed ID: 27353520 [TBL] [Abstract][Full Text] [Related]
11. Connectivity between catalytic landscapes of the metallo-β-lactamase superfamily. Baier F; Tokuriki N J Mol Biol; 2014 Jun; 426(13):2442-56. PubMed ID: 24769192 [TBL] [Abstract][Full Text] [Related]
12. Modeling the Transient Kinetics of the L1 Metallo-β-Lactamase. Khrenova MG; Nemukhin AV J Phys Chem B; 2018 Feb; 122(4):1378-1386. PubMed ID: 29298481 [TBL] [Abstract][Full Text] [Related]
13. Substitution of the catalytic metal and protein PEGylation enhances activity and stability of bacterial phosphotriesterase. Perezgasga L; Sánchez-Sánchez L; Aguila S; Vazquez-Duhalt R Appl Biochem Biotechnol; 2012 Mar; 166(5):1236-47. PubMed ID: 22249853 [TBL] [Abstract][Full Text] [Related]
14. Base Mechanism to the Hydrolysis of Phosphate Triester Promoted by the Cd Chagas MA; Pereira ES; Godinho MPB; Da Silva JCS; Rocha WR Inorg Chem; 2018 May; 57(10):5888-5902. PubMed ID: 29746110 [TBL] [Abstract][Full Text] [Related]
15. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Bebrone C Biochem Pharmacol; 2007 Dec; 74(12):1686-701. PubMed ID: 17597585 [TBL] [Abstract][Full Text] [Related]
16. Identification of putative zinc hydrolase genes of the metallo-beta-lactamase superfamily from Campylobacter jejuni. Alfredson DA; Korolik V FEMS Immunol Med Microbiol; 2007 Feb; 49(1):159-64. PubMed ID: 17266723 [TBL] [Abstract][Full Text] [Related]
17. Interrogation of the Substrate Profile and Catalytic Properties of the Phosphotriesterase from Sphingobium sp. Strain TCM1: An Enzyme Capable of Hydrolyzing Organophosphate Flame Retardants and Plasticizers. Xiang DF; Bigley AN; Ren Z; Xue H; Hull KG; Romo D; Raushel FM Biochemistry; 2015 Dec; 54(51):7539-49. PubMed ID: 26629649 [TBL] [Abstract][Full Text] [Related]
18. Reverse evolution leads to genotypic incompatibility despite functional and active site convergence. Kaltenbach M; Jackson CJ; Campbell EC; Hollfelder F; Tokuriki N Elife; 2015 Aug; 4():. PubMed ID: 26274563 [TBL] [Abstract][Full Text] [Related]
20. Enhanced degradation of chemical warfare agents through molecular engineering of the phosphotriesterase active site. Hill CM; Li WS; Thoden JB; Holden HM; Raushel FM J Am Chem Soc; 2003 Jul; 125(30):8990-1. PubMed ID: 15369336 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]