These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 29635099)

  • 1. The relationship between mismatch response and the acoustic change complex in normal hearing infants.
    Uhler KM; Hunter SK; Tierney E; Gilley PM
    Clin Neurophysiol; 2018 Jun; 129(6):1148-1160. PubMed ID: 29635099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acoustic Change Complex and Visually Reinforced Infant Speech Discrimination Measures of Vowel Contrast Detection.
    Cone BK; Smith S; Cheek Smith DE
    Ear Hear; 2022; 43(2):531-544. PubMed ID: 34456301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A systematic review of acoustic change complex (ACC) measurements and applicability in children for the assessment of the neural capacity for sound and speech discrimination.
    Meehan S; Adank ML; van der Schroeff MP; Vroegop JL
    Hear Res; 2024 Sep; 451():109090. PubMed ID: 39047579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spectral-temporal EEG dynamics of speech discrimination processing in infants during sleep.
    Gilley PM; Uhler K; Watson K; Yoshinaga-Itano C
    BMC Neurosci; 2017 Mar; 18(1):34. PubMed ID: 28330464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Does the ACC have potential as an index of early speech discrimination ability? A preliminary study in 4-month-old infants with normal hearing.
    Small SA; Werker JF
    Ear Hear; 2012; 33(6):e59-69. PubMed ID: 22785572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acoustic change complex for assessing speech discrimination in normal-hearing and hearing-impaired infants.
    Ching TYC; Zhang VW; Ibrahim R; Bardy F; Rance G; Van Dun B; Sharma M; Chisari D; Dillon H
    Clin Neurophysiol; 2023 May; 149():121-132. PubMed ID: 36963143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cortical potentials evoked by tone frequency changes can predict speech perception in noise.
    Vonck BMD; van Heteren JAA; Lammers MJW; de Jel DVC; Schaake WAA; van Zanten GA; Stokroos RJ; Versnel H
    Hear Res; 2022 Jul; 420():108508. PubMed ID: 35477512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence of Vowel Discrimination Provided by the Acoustic Change Complex.
    Cheek D; Cone B
    Ear Hear; 2020; 41(4):855-867. PubMed ID: 31688315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Stimulus Level and Bandwidth on Speech-Evoked Envelope Following Responses in Adults With Normal Hearing.
    Easwar V; Purcell DW; Aiken SJ; Parsa V; Scollie SD
    Ear Hear; 2015; 36(6):619-34. PubMed ID: 26226607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The mismatch response in normal hearing adults: a performance comparison with stimuli relevant for objective validation of hearing aid fittings.
    Maslin MRD; Wise KJ; Purdy SC
    Int J Audiol; 2023 Nov; 62(11):1084-1094. PubMed ID: 36628549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of Signal to Noise Ratio on Cortical Auditory-Evoked Potentials Elicited to Speech Stimuli in Infants and Adults With Normal Hearing.
    Small SA; Sharma M; Bradford M; Mandikal Vasuki PR
    Ear Hear; 2018; 39(2):305-317. PubMed ID: 28863034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infant cortical electrophysiology and perception of vowel contrasts.
    Cone BK
    Int J Psychophysiol; 2015 Feb; 95(2):65-76. PubMed ID: 24933411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic auditory processing of english words as indexed by the mismatch negativity, using a multiple deviant paradigm.
    Pettigrew CM; Murdoch BE; Ponton CW; Finnigan S; Alku P; Kei J; Sockalingam R; Chenery HJ
    Ear Hear; 2004 Jun; 25(3):284-301. PubMed ID: 15179119
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical potentials evoked by tone frequency changes compared to frequency discrimination and speech perception: Thresholds in normal-hearing and hearing-impaired subjects.
    Vonck BMD; Lammers MJW; Schaake WAA; van Zanten GA; Stokroos RJ; Versnel H
    Hear Res; 2021 Mar; 401():108154. PubMed ID: 33387905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Speech-Evoked Envelope Following Responses as an Objective Aided Outcome Measure: Effect of Stimulus Level, Bandwidth, and Amplification in Adults With Hearing Loss.
    Easwar V; Purcell DW; Aiken SJ; Parsa V; Scollie SD
    Ear Hear; 2015; 36(6):635-52. PubMed ID: 26226606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vowel discrimination by hearing infants as a function of number of spectral channels.
    Warner-Czyz AD; Houston DM; Hynan LS
    J Acoust Soc Am; 2014 May; 135(5):3017-24. PubMed ID: 24815281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of Nonlinear Frequency Compression on ACC Amplitude and Listener Performance.
    Kirby BJ; Brown CJ
    Ear Hear; 2015; 36(5):e261-70. PubMed ID: 25951048
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustically evoked auditory change complex in children with auditory neuropathy spectrum disorder: a potential objective tool for identifying cochlear implant candidates.
    He S; Grose JH; Teagle HF; Woodard J; Park LR; Hatch DR; Roush P; Buchman CA
    Ear Hear; 2015; 36(3):289-301. PubMed ID: 25422994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of spectrotemporal features on auditory event-related potentials elicited by consonant-vowel syllables.
    Digeser FM; Wohlberedt T; Hoppe U
    Ear Hear; 2009 Dec; 30(6):704-12. PubMed ID: 19672195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.