These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 29635482)

  • 41. A mechanism related to the yeast transcriptional regulator Paf1c is required for expression of the Arabidopsis FLC/MAF MADS box gene family.
    Oh S; Zhang H; Ludwig P; van Nocker S
    Plant Cell; 2004 Nov; 16(11):2940-53. PubMed ID: 15472079
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cloning of a MADS box gene (GhMADS3) from cotton and analysis of its homeotic role in transgenic tobacco.
    Guo Y; Zhu Q; Zheng S; Li M
    J Genet Genomics; 2007 Jun; 34(6):527-35. PubMed ID: 17601612
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multiple interactions amongst floral homeotic MADS box proteins.
    Davies B; Egea-Cortines M; de Andrade Silva E; Saedler H; Sommer H
    EMBO J; 1996 Aug; 15(16):4330-43. PubMed ID: 8861961
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeted inactivation of transcription factors by overexpression of their truncated forms in plants.
    Seo PJ; Hong SY; Ryu JY; Jeong EY; Kim SG; Baldwin IT; Park CM
    Plant J; 2012 Oct; 72(1):162-72. PubMed ID: 22672153
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spatiotemporal expression of duplicate AGAMOUS orthologues during floral development in Phalaenopsis.
    Song IJ; Nakamura T; Fukuda T; Yokoyama J; Ito T; Ichikawa H; Horikawa Y; Kameya T; Kanno A
    Dev Genes Evol; 2006 Jun; 216(6):301-13. PubMed ID: 16463041
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen.
    Maejima K; Kitazawa Y; Tomomitsu T; Yusa A; Neriya Y; Himeno M; Yamaji Y; Oshima K; Namba S
    Plant Signal Behav; 2015; 10(8):e1042635. PubMed ID: 26179462
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals.
    Alvarez-Buylla ER; Pelaz S; Liljegren SJ; Gold SE; Burgeff C; Ditta GS; Ribas de Pouplana L; Martínez-Castilla L; Yanofsky MF
    Proc Natl Acad Sci U S A; 2000 May; 97(10):5328-33. PubMed ID: 10805792
    [TBL] [Abstract][Full Text] [Related]  

  • 48. PIE1, an ISWI family gene, is required for FLC activation and floral repression in Arabidopsis.
    Noh YS; Amasino RM
    Plant Cell; 2003 Jul; 15(7):1671-82. PubMed ID: 12837955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of MADS box protein-protein interactions in living plant cells.
    Immink RG; Gadella TW; Ferrario S; Busscher M; Angenent GC
    Proc Natl Acad Sci U S A; 2002 Feb; 99(4):2416-21. PubMed ID: 11854533
    [TBL] [Abstract][Full Text] [Related]  

  • 50. G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice.
    Liu Q; Han R; Wu K; Zhang J; Ye Y; Wang S; Chen J; Pan Y; Li Q; Xu X; Zhou J; Tao D; Wu Y; Fu X
    Nat Commun; 2018 Feb; 9(1):852. PubMed ID: 29487282
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TaVRT2 represses transcription of the wheat vernalization gene TaVRN1.
    Kane NA; Agharbaoui Z; Diallo AO; Adam H; Tominaga Y; Ouellet F; Sarhan F
    Plant J; 2007 Aug; 51(4):670-80. PubMed ID: 17587304
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Unequal genetic redundancy of rice PISTILLATA orthologs, OsMADS2 and OsMADS4, in lodicule and stamen development.
    Yao SG; Ohmori S; Kimizu M; Yoshida H
    Plant Cell Physiol; 2008 May; 49(5):853-7. PubMed ID: 18378529
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pistillody is caused by alterations to the class-B MADS-box gene expression pattern in alloplasmic wheats.
    Hama E; Takumi S; Ogihara Y; Murai K
    Planta; 2004 Mar; 218(5):712-20. PubMed ID: 14652757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The plant heat stress transcription factor (Hsf) family: structure, function and evolution.
    Scharf KD; Berberich T; Ebersberger I; Nover L
    Biochim Biophys Acta; 2012 Feb; 1819(2):104-19. PubMed ID: 22033015
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular mechanisms of floral organ specification by MADS domain proteins.
    Yan W; Chen D; Kaufmann K
    Curr Opin Plant Biol; 2016 Feb; 29():154-62. PubMed ID: 26802807
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The C-Terminal Sequence and PI motif of the Orchid (Oncidium Gower Ramsey) PISTILLATA (PI) Ortholog Determine its Ability to Bind AP3 Orthologs and Enter the Nucleus to Regulate Downstream Genes Controlling Petal and Stamen Formation.
    Mao WT; Hsu HF; Hsu WH; Li JY; Lee YI; Yang CH
    Plant Cell Physiol; 2015 Nov; 56(11):2079-99. PubMed ID: 26423960
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The A-B-A of Floral Transition: The to Do List for Perfect Escape.
    Conti L
    Mol Plant; 2019 Mar; 12(3):289-291. PubMed ID: 30790664
    [No Abstract]   [Full Text] [Related]  

  • 58. Binding site selection for the plant MADS domain protein AGL15: an in vitro and in vivo study.
    Tang W; Perry SE
    J Biol Chem; 2003 Jul; 278(30):28154-9. PubMed ID: 12743119
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The Origin of Floral Organ Identity Quartets.
    Ruelens P; Zhang Z; van Mourik H; Maere S; Kaufmann K; Geuten K
    Plant Cell; 2017 Feb; 29(2):229-242. PubMed ID: 28100708
    [TBL] [Abstract][Full Text] [Related]  

  • 60. APETALA2 functions as a temporal factor together with BLADE-ON-PETIOLE2 and MADS29 to control flower and grain development in barley.
    Shoesmith JR; Solomon CU; Yang X; Wilkinson LG; Sheldrick S; van Eijden E; Couwenberg S; Pugh LM; Eskan M; Stephens J; Barakate A; Drea S; Houston K; Tucker MR; McKim SM
    Development; 2021 Mar; 148(5):. PubMed ID: 33526582
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.