These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

100 related articles for article (PubMed ID: 29635609)

  • 41. Fluid-Structure Finite-Element Modelling and Clinical Measurement of the Wideband Acoustic Input Admittance of the Newborn Ear Canal and Middle Ear.
    Motallebzadeh H; Maftoon N; Pitaro J; Funnell WRJ; Daniel SJ
    J Assoc Res Otolaryngol; 2017 Oct; 18(5):671-686. PubMed ID: 28721606
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The Effect of Ear Canal Orientation on Tympanic Membrane Motion and the Sound Field Near the Tympanic Membrane.
    Cheng JT; Ravicz M; Guignard J; Furlong C; Rosowski JJ
    J Assoc Res Otolaryngol; 2015 Aug; 16(4):413-32. PubMed ID: 25910607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fixation and detachment of superior and anterior malleolar ligaments in human middle ear: experiment and modeling.
    Dai C; Cheng T; Wood MW; Gan RZ
    Hear Res; 2007 Aug; 230(1-2):24-33. PubMed ID: 17517484
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.
    Wang X; Wang L; Zhou J; Hu Y
    Comput Methods Biomech Biomed Engin; 2014 Aug; 17(10):1096-107. PubMed ID: 23171060
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Finite-element analysis of middle-ear pressure effects on static and dynamic behavior of human ear.
    Wang X; Cheng T; Gan RZ
    J Acoust Soc Am; 2007 Aug; 122(2):906-17. PubMed ID: 17672640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Traumatic perforations of tympanic membrane due to blast injury.
    IRELAND PE
    Can Med Assoc J; 1946 Mar; 54():256-8. PubMed ID: 21016189
    [No Abstract]   [Full Text] [Related]  

  • 47. Effects of model definitions and parameter values in finite element modeling of human middle ear mechanics.
    De Greef D; Pires F; Dirckx JJ
    Hear Res; 2017 Feb; 344():195-206. PubMed ID: 27915026
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Blast injury of the tympanic membrane.
    GLASS EJ
    J Laryngol Otol; 1945 Nov; 60():441-4. PubMed ID: 20991969
    [No Abstract]   [Full Text] [Related]  

  • 49. [Tympanic membrane massage, origin and decline of a promising therapeutic concept].
    Feldmann H
    Laryngorhinootologie; 1996 Aug; 75(8):491-8. PubMed ID: 8962613
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effect of Silastic sheeting over the round window niche on sound transmission in the intact human middle ear.
    Alian WA; Majdalawieh OF; Van Wijhe RG; Ejnell H; Bance M
    J Otolaryngol Head Neck Surg; 2012 Feb; 41(1):1-7. PubMed ID: 22498261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Middle-ear function in the chinchilla: Circuit models and comparison with other mammalian species.
    Lemons C; Meaud J
    J Acoust Soc Am; 2016 Oct; 140(4):2735. PubMed ID: 27794345
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A comprehensive model of human ear for analysis of implantable hearing devices.
    Zhang X; Gan RZ
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):3024-7. PubMed ID: 21708496
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Numerical evaluation of implantable hearing devices using a finite element model of human ear considering viscoelastic properties.
    Zhang J; Tian J; Ta N; Huang X; Rao Z
    Proc Inst Mech Eng H; 2016 Aug; 230(8):784-94. PubMed ID: 27276992
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sound pressure distribution within natural and artificial human ear canals: forward stimulation.
    Ravicz ME; Tao Cheng J; Rosowski JJ
    J Acoust Soc Am; 2014 Dec; 136(6):3132. PubMed ID: 25480061
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Analysis of the mechano-acoustic influence of the tympanic cavity in the auditory system.
    Garcia-Gonzalez A; Castro-Egler C; Gonzalez-Herrera A
    Biomed Eng Online; 2016 Mar; 15():33. PubMed ID: 27029189
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computer-integrated finite element modeling of human middle ear.
    Sun Q; Gan RZ; Chang KH; Dormer KJ
    Biomech Model Mechanobiol; 2002 Oct; 1(2):109-22. PubMed ID: 14595544
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Patterns of hearing loss in tympanic membrane perforation resulting from physical blow to the ear: a prospective controlled cohort study.
    Orji FT; Agu CC
    Clin Otolaryngol; 2009 Dec; 34(6):526-32. PubMed ID: 20070761
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Human middle-ear model with compound eardrum and airway branching in mastoid air cells.
    Keefe DH
    J Acoust Soc Am; 2015 May; 137(5):2698-725. PubMed ID: 25994701
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Testing a method for quantifying the output of implantable middle ear hearing devices.
    Rosowski JJ; Chien W; Ravicz ME; Merchant SN
    Audiol Neurootol; 2007; 12(4):265-76. PubMed ID: 17406105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Mechanisms of hearing loss resulting from middle-ear fluid.
    Ravicz ME; Rosowski JJ; Merchant SN
    Hear Res; 2004 Sep; 195(1-2):103-30. PubMed ID: 15350284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.