These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 29635695)
1. Is the choice of a standard zeroth-order hamiltonian in CASPT2 ansatz optimal in calculations of excitation energies in protonated and unprotonated schiff bases of retinal? Wolański Ł; Grabarek D; Andruniów T J Comput Chem; 2018 Jul; 39(20):1470-1480. PubMed ID: 29635695 [TBL] [Abstract][Full Text] [Related]
2. The IPEA dilemma in CASPT2. Zobel JP; Nogueira JJ; González L Chem Sci; 2017 Feb; 8(2):1482-1499. PubMed ID: 28572908 [TBL] [Abstract][Full Text] [Related]
3. Excitation energies of retinal chromophores: critical role of the structural model. Valsson O; Angeli C; Filippi C Phys Chem Chem Phys; 2012 Aug; 14(31):11015-20. PubMed ID: 22782521 [TBL] [Abstract][Full Text] [Related]
4. Assessing the Accuracy of Various Ab Initio Methods for Geometries and Excitation Energies of Retinal Chromophore Minimal Model by Comparison with CASPT3 Results. Grabarek D; Walczak E; Andruniów T J Chem Theory Comput; 2016 May; 12(5):2346-56. PubMed ID: 27049438 [TBL] [Abstract][Full Text] [Related]
5. What zeroth-order Hamiltonian for CASPT2 adiabatic energetics of Fe(II)N(6) architectures? Kepenekian M; Robert V; Le Guennic B J Chem Phys; 2009 Sep; 131(11):114702. PubMed ID: 19778137 [TBL] [Abstract][Full Text] [Related]
6. Initial excited-state relaxation of locked retinal protonated schiff base chromophore. An insight from coupled cluster and multireference perturbation theory calculations. Grabarek D; Andruniów T J Comput Chem; 2018 Aug; 39(22):1720-1727. PubMed ID: 29727036 [TBL] [Abstract][Full Text] [Related]
7. On the zeroth-order hamiltonian for CASPT2 calculations of spin crossover compounds. Vela S; Fumanal M; Ribas-Ariño J; Robert V J Comput Chem; 2016 Apr; 37(10):947-53. PubMed ID: 26695936 [TBL] [Abstract][Full Text] [Related]
8. Excited-state minima and emission energies of retinal chromophore analogues: Performance of CASSCF and CC2 methods as compared with CASPT2. Szefczyk B; Grabarek D; Walczak E; Andruniów T J Comput Chem; 2017 Jul; 38(20):1799-1810. PubMed ID: 28512740 [TBL] [Abstract][Full Text] [Related]
9. Analytic first-order derivatives of CASPT2 with IPEA shift. Nishimoto Y J Chem Phys; 2023 May; 158(17):. PubMed ID: 37144712 [TBL] [Abstract][Full Text] [Related]
10. Excitation Energies of Canonical Nucleobases Computed by Multiconfigurational Perturbation Theories. Wiebeler C; Borin V; Sanchez de Araújo AV; Schapiro I; Borin AC Photochem Photobiol; 2017 May; 93(3):888-902. PubMed ID: 28500703 [TBL] [Abstract][Full Text] [Related]
11. An alternative choice of the zeroth-order Hamiltonian in CASPT2 theory. Kollmar C; Sivalingam K; Neese F J Chem Phys; 2020 Jun; 152(21):214110. PubMed ID: 32505163 [TBL] [Abstract][Full Text] [Related]
12. Ground and excited states of retinal schiff base chromophores by multiconfigurational perturbation theory. Sekharan S; Weingart O; Buss V Biophys J; 2006 Jul; 91(1):L07-9. PubMed ID: 16648170 [TBL] [Abstract][Full Text] [Related]
13. A semiempirical study of the optimized ground and excited state potential energy surfaces of retinal and its protonated Schiff base. Parusel AB; Pohorille A J Photochem Photobiol B; 2001 Dec; 65(1):13-21. PubMed ID: 11748000 [TBL] [Abstract][Full Text] [Related]
14. Assessment of n-Electron Valence State Perturbation Theory for Vertical Excitation Energies. Schapiro I; Sivalingam K; Neese F J Chem Theory Comput; 2013 Aug; 9(8):3567-80. PubMed ID: 26584112 [TBL] [Abstract][Full Text] [Related]
15. Geometries and Vertical Excitation Energies in Retinal Analogues Resolved at the CASPT2 Level of Theory: Critical Assessment of the Performance of CASSCF, CC2, and DFT Methods. Walczak E; Szefczyk B; Andruniów T J Chem Theory Comput; 2013 Nov; 9(11):4915-27. PubMed ID: 26583410 [TBL] [Abstract][Full Text] [Related]
16. Assessing the Performances of CASPT2 and NEVPT2 for Vertical Excitation Energies. Sarkar R; Loos PF; Boggio-Pasqua M; Jacquemin D J Chem Theory Comput; 2022 Apr; 18(4):2418-2436. PubMed ID: 35333060 [TBL] [Abstract][Full Text] [Related]
17. Excited-state properties and environmental effects for protonated schiff bases: a theoretical study. Aquino AJ; Barbatti M; Lischka H Chemphyschem; 2006 Oct; 7(10):2089-96. PubMed ID: 16941558 [TBL] [Abstract][Full Text] [Related]
18. TD-DFT calculations of the potential energy curves for the trans-cis photo-isomerization of protonated Schiff base of retinal. Tachikawa H; Iyama T J Photochem Photobiol B; 2004 Oct; 76(1-3):55-60. PubMed ID: 15488716 [TBL] [Abstract][Full Text] [Related]
20. Complete vs Restricted Active Space Perturbation Theory Calculation of the Cr2 Potential Energy Surface. Ruipérez F; Aquilante F; Ugalde JM; Infante I J Chem Theory Comput; 2011 Jun; 7(6):1640-6. PubMed ID: 26596430 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]