These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 29635695)
21. Vibrational analysis of excited and ground electronic states of all-trans retinal protonated Schiff-bases. Kraack JP; Buckup T; Motzkus M Phys Chem Chem Phys; 2011 Dec; 13(48):21402-10. PubMed ID: 22033578 [TBL] [Abstract][Full Text] [Related]
22. Spin State Energetics in First-Row Transition Metal Complexes: Contribution of (3s3p) Correlation and Its Description by Second-Order Perturbation Theory. Pierloot K; Phung QM; Domingo A J Chem Theory Comput; 2017 Feb; 13(2):537-553. PubMed ID: 28005368 [TBL] [Abstract][Full Text] [Related]
23. Evidence for the Two-State-Two-Mode model in retinal protonated Schiff-bases from pump degenerate four-wave-mixing experiments. Kraack JP; Buckup T; Motzkus M Phys Chem Chem Phys; 2012 Oct; 14(40):13979-88. PubMed ID: 22990940 [TBL] [Abstract][Full Text] [Related]
24. S1 and S2 excited States of gas-phase Schiff-base retinal chromophores. Nielsen IB; Lammich L; Andersen LH Phys Rev Lett; 2006 Jan; 96(1):018304. PubMed ID: 16486529 [TBL] [Abstract][Full Text] [Related]
25. Nonadiabatic ab initio dynamics of a model protonated Schiff base of 9-cis retinal. Chung WC; Nanbu S; Ishida T J Phys Chem A; 2010 Aug; 114(32):8190-201. PubMed ID: 20666503 [TBL] [Abstract][Full Text] [Related]
26. Retinal shows its true colours: photoisomerization action spectra of mobility-selected isomers of the retinal protonated Schiff base. Coughlan NJ; Adamson BD; Gamon L; Catani K; Bieske EJ Phys Chem Chem Phys; 2015 Sep; 17(35):22623-31. PubMed ID: 26280514 [TBL] [Abstract][Full Text] [Related]
27. Optical properties of S Wang X; Yan P; Mu X Spectrochim Acta A Mol Biomol Spectrosc; 2020 Mar; 228():117532. PubMed ID: 31831307 [TBL] [Abstract][Full Text] [Related]
28. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base. Tsutsui K; Imai H; Shichida Y Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760 [TBL] [Abstract][Full Text] [Related]
29. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. Cembran A; Bernardi F; Olivucci M; Garavelli M J Am Chem Soc; 2004 Dec; 126(49):16018-37. PubMed ID: 15584736 [TBL] [Abstract][Full Text] [Related]
30. Photoelectrochromism in the Retinal Protonated Schiff Base Chromophore: Photoisomerization Speed and Selectivity under a Homogeneous Electric Field at Different Operational Regimes. El-Tahawy MM; Nenov A; Garavelli M J Chem Theory Comput; 2016 Sep; 12(9):4460-75. PubMed ID: 27494352 [TBL] [Abstract][Full Text] [Related]
31. Absorption of schiff-base retinal chromophores in vacuo. Andersen LH; Nielsen IB; Kristensen MB; El Ghazaly MO; Haacke S; Nielsen MB; Petersen MA J Am Chem Soc; 2005 Sep; 127(35):12347-50. PubMed ID: 16131214 [TBL] [Abstract][Full Text] [Related]
32. Reduction of the virtual space for coupled-cluster excitation energies of large molecules and embedded systems. Send R; Kaila VR; Sundholm D J Chem Phys; 2011 Jun; 134(21):214114. PubMed ID: 21663351 [TBL] [Abstract][Full Text] [Related]
33. Dependence of photochemical reactivity of the all-trans retinal protonated Schiff base on the solvent and the excitation wavelength. Zgrablić G; Ricci M; Novello AM; Parmigiani F Photochem Photobiol; 2010; 86(3):507-12. PubMed ID: 20132512 [TBL] [Abstract][Full Text] [Related]
34. Perturbation Expansion of Internally Contracted Coupled-Cluster Theory up to Third Order. Aoto YA; Bargholz A; Kats D; Werner HJ; Köhn A J Chem Theory Comput; 2019 Apr; 15(4):2291-2305. PubMed ID: 30794385 [TBL] [Abstract][Full Text] [Related]
35. On the TD-DFT accuracy in determining single and double bonds in excited-state structures of organic molecules. Guido CA; Jacquemin D; Adamo C; Mennucci B J Phys Chem A; 2010 Dec; 114(51):13402-10. PubMed ID: 21126028 [TBL] [Abstract][Full Text] [Related]
36. Retinal has a highly dipolar vertically excited singlet state: implications for vision. Mathies R; Stryer L Proc Natl Acad Sci U S A; 1976 Jul; 73(7):2169-73. PubMed ID: 1065867 [TBL] [Abstract][Full Text] [Related]
37. Photoresponse of the protonated Schiff-base retinal chromophore in the gas phase. Toker Y; Rahbek DB; Kiefer HV; Rajput J; Antoine R; Dugourd P; Brøndsted Nielsen S; Bochenkova AV; Andersen LH Phys Chem Chem Phys; 2013 Dec; 15(45):19566-9. PubMed ID: 24142109 [TBL] [Abstract][Full Text] [Related]
38. S1 and S2 excited states of gas-phase Schiff-base retinal chromophores: a time-dependent density functional theoretical investigation. Sun M; Ding Y; Cui G; Liu Y J Phys Chem A; 2007 Apr; 111(15):2946-50. PubMed ID: 17388381 [TBL] [Abstract][Full Text] [Related]
39. Solvent effects on the low-lying excited states of a model of retinal. Muñoz Losa A; Fdez Galván I; Martín ME; Aguilar MA J Phys Chem B; 2006 Sep; 110(36):18064-71. PubMed ID: 16956299 [TBL] [Abstract][Full Text] [Related]
40. Shape of Multireference, Equation-of-Motion Coupled-Cluster, and Density Functional Theory Potential Energy Surfaces at a Conical Intersection. Gozem S; Melaccio F; Valentini A; Filatov M; Huix-Rotllant M; Ferré N; Frutos LM; Angeli C; Krylov AI; Granovsky AA; Lindh R; Olivucci M J Chem Theory Comput; 2014 Aug; 10(8):3074-84. PubMed ID: 26588278 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]