These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 29636134)

  • 21. Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits.
    Salou L; Hoornaert A; Louarn G; Layrolle P
    Acta Biomater; 2015 Jan; 11():494-502. PubMed ID: 25449926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Determining the relative importance of titania nanotubes characteristics on bone implant surface performance: A quality by design study with a fuzzy approach.
    Martinez-Marquez D; Gulati K; Carty CP; Stewart RA; Ivanovski S
    Mater Sci Eng C Mater Biol Appl; 2020 Sep; 114():110995. PubMed ID: 32993986
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions.
    Zhao L; Mei S; Chu PK; Zhang Y; Wu Z
    Biomaterials; 2010 Jul; 31(19):5072-82. PubMed ID: 20362328
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reduced adhesion of macrophages on anodized titanium with select nanotube surface features.
    Rajyalakshmi A; Ercan B; Balasubramanian K; Webster TJ
    Int J Nanomedicine; 2011; 6():1765-71. PubMed ID: 21980239
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bridging the gap: Optimized fabrication of robust titania nanostructures on complex implant geometries towards clinical translation.
    Li T; Gulati K; Wang N; Zhang Z; Ivanovski S
    J Colloid Interface Sci; 2018 Nov; 529():452-463. PubMed ID: 29945016
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Anodization: a promising nano-modification technique of titanium implants for orthopedic applications.
    Yao C; Webster TJ
    J Nanosci Nanotechnol; 2006; 6(9-10):2682-92. PubMed ID: 17048475
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In Situ Transformation of Chitosan Films into Microtubular Structures on the Surface of Nanoengineered Titanium Implants.
    Gulati K; Johnson L; Karunagaran R; Findlay D; Losic D
    Biomacromolecules; 2016 Apr; 17(4):1261-71. PubMed ID: 26999291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vivo osseointegration of Ti implants with a strontium-containing nanotubular coating.
    Dang Y; Zhang L; Song W; Chang B; Han T; Zhang Y; Zhao L
    Int J Nanomedicine; 2016; 11():1003-11. PubMed ID: 27042055
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Engineered titanium implants for localized drug delivery: recent advances and perspectives of Titania nanotubes arrays.
    Maher S; Mazinani A; Barati MR; Losic D
    Expert Opin Drug Deliv; 2018 Oct; 15(10):1021-1037. PubMed ID: 30259776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tailoring Additively Manufactured Titanium Implants for Short-Time Pediatric Implantations with Enhanced Bactericidal Activity.
    Maher S; Linklater D; Rastin H; Le Yap P; Ivanova EP; Losic D
    ChemMedChem; 2022 Jan; 17(2):e202100580. PubMed ID: 34606176
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Orchestrating soft tissue integration at the transmucosal region of titanium implants.
    Guo T; Gulati K; Arora H; Han P; Fournier B; Ivanovski S
    Acta Biomater; 2021 Apr; 124():33-49. PubMed ID: 33444803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nanotubular topography enhances the bioactivity of titanium implants.
    Huang J; Zhang X; Yan W; Chen Z; Shuai X; Wang A; Wang Y
    Nanomedicine; 2017 Aug; 13(6):1913-1923. PubMed ID: 28400159
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of engineered titania nanotubular surfaces on bone cells.
    Popat KC; Leoni L; Grimes CA; Desai TA
    Biomaterials; 2007 Jul; 28(21):3188-97. PubMed ID: 17449092
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classification of osseointegrated implant surfaces: materials, chemistry and topography.
    Dohan Ehrenfest DM; Coelho PG; Kang BS; Sul YT; Albrektsson T
    Trends Biotechnol; 2010 Apr; 28(4):198-206. PubMed ID: 20116873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion.
    Çalışkan N; Bayram C; Erdal E; Karahaliloğlu Z; Denkbaş EB
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():100-5. PubMed ID: 24411357
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved implant osseointegration of a nanostructured titanium surface via mediation of macrophage polarization.
    Ma QL; Zhao LZ; Liu RR; Jin BQ; Song W; Wang Y; Zhang YS; Chen LH; Zhang YM
    Biomaterials; 2014 Dec; 35(37):9853-9867. PubMed ID: 25201737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functionalization of titanium dioxide nanotubes with biomolecules for biomedical applications.
    Oliveira WF; Arruda IRS; Silva GMM; Machado G; Coelho LCBB; Correia MTS
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():597-606. PubMed ID: 28888015
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Processing and Characterization of SrTiO₃-TiO₂ Nanoparticle-Nanotube Heterostructures on Titanium for Biomedical Applications.
    Wang Y; Zhang D; Wen C; Li Y
    ACS Appl Mater Interfaces; 2015 Jul; 7(29):16018-26. PubMed ID: 26136139
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhanced osteoconductivity of titanium implant by polarization-induced surface charges.
    Nozaki K; Wang W; Horiuchi N; Nakamura M; Takakuda K; Yamashita K; Nagai A
    J Biomed Mater Res A; 2014 Sep; 102(9):3077-86. PubMed ID: 24123807
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes.
    Oh SH; Finõnes RR; Daraio C; Chen LH; Jin S
    Biomaterials; 2005 Aug; 26(24):4938-43. PubMed ID: 15769528
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.