These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 2963614)
1. Dissociation between contraction and relaxation: the possible role of phospholamban phosphorylation. Mundiña de Weilenmann C; Vittone L; de Cingolani G; Mattiazzi A Basic Res Cardiol; 1987; 82(6):507-16. PubMed ID: 2963614 [TBL] [Abstract][Full Text] [Related]
2. [Correlation between myocardial relaxation and phosphorylation of phospholamban]. Vittone L; Mundiña C; Chiappe de Cingolani G; Mattiazzi A Acta Physiol Pharmacol Latinoam; 1988; 38(2):213-27. PubMed ID: 3188961 [TBL] [Abstract][Full Text] [Related]
3. cAMP and calcium-dependent mechanisms of phospholamban phosphorylation in intact hearts. Vittone L; Mundiña C; Chiappe de Cingolani G; Mattiazzi A Am J Physiol; 1990 Feb; 258(2 Pt 2):H318-25. PubMed ID: 1689964 [TBL] [Abstract][Full Text] [Related]
4. Regulation of cardiac sarcoplasmic reticulum function by phospholamban. Edes I; Kranias EG Membr Biochem; 1987-1988; 7(3):175-92. PubMed ID: 2855362 [TBL] [Abstract][Full Text] [Related]
5. Thyroid hormone-induced alterations in phospholamban protein expression. Regulatory effects on sarcoplasmic reticulum Ca2+ transport and myocardial relaxation. Kiss E; Jakab G; Kranias EG; Edes I Circ Res; 1994 Aug; 75(2):245-51. PubMed ID: 8033338 [TBL] [Abstract][Full Text] [Related]
6. Age-related alterations in the phosphorylation of sarcoplasmic reticulum and myofibrillar proteins and diminished contractile response to isoproterenol in intact rat ventricle. Jiang MT; Moffat MP; Narayanan N Circ Res; 1993 Jan; 72(1):102-11. PubMed ID: 8380258 [TBL] [Abstract][Full Text] [Related]
7. Phosphorylation of phospholamban in intact myocardium. Role of Ca2+-calmodulin-dependent mechanisms. Lindemann JP; Watanabe AM J Biol Chem; 1985 Apr; 260(7):4516-25. PubMed ID: 3156859 [TBL] [Abstract][Full Text] [Related]
8. Effects of acidosis on phosphorylation of phospholamban and troponin I in rat cardiac muscle. Mundiña-Weilenmann C; Vittone L; Cingolani HE; Orchard CH Am J Physiol; 1996 Jan; 270(1 Pt 1):C107-14. PubMed ID: 8772435 [TBL] [Abstract][Full Text] [Related]
9. Ser16 prevails over Thr17 phospholamban phosphorylation in the beta-adrenergic regulation of cardiac relaxation. Kuschel M; Karczewski P; Hempel P; Schlegel WP; Krause EG; Bartel S Am J Physiol; 1999 May; 276(5):H1625-33. PubMed ID: 10330247 [TBL] [Abstract][Full Text] [Related]
10. Regulation of the Ca2+ gradient across the sarcoplasmic reticulum in perfused rabbit heart. A 19F nuclear magnetic resonance study. Chen W; London R; Murphy E; Steenbergen C Circ Res; 1998 Nov; 83(9):898-907. PubMed ID: 9797338 [TBL] [Abstract][Full Text] [Related]
11. Effects of aging on phospholamban phosphorylation and calcium transport in rat cardiac sarcoplasmic reticulum. Jiang MT; Narayanan N Mech Ageing Dev; 1990 May; 54(1):87-101. PubMed ID: 2366595 [TBL] [Abstract][Full Text] [Related]
12. Time course and mechanisms of phosphorylation of phospholamban residues in ischemia-reperfused rat hearts. Dissociation of phospholamban phosphorylation pathways. Vittone L; Mundiña-Weilenmann C; Said M; Ferrero P; Mattiazzi A J Mol Cell Cardiol; 2002 Jan; 34(1):39-50. PubMed ID: 11812163 [TBL] [Abstract][Full Text] [Related]
13. Effects of Levosimendan, a cardiotonic agent targeted to troponin C, on cardiac function and on phosphorylation and Ca2+ sensitivity of cardiac myofibrils and sarcoplasmic reticulum in guinea pig heart. Edes I; Kiss E; Kitada Y; Powers FM; Papp JG; Kranias EG; Solaro RJ Circ Res; 1995 Jul; 77(1):107-13. PubMed ID: 7788868 [TBL] [Abstract][Full Text] [Related]
14. On the mechanism of the reduction by thyroid hormone of beta-adrenergic relaxation rate stimulation in rat heart. Beekman RE; van Hardeveld C; Simonides WS Biochem J; 1989 Apr; 259(1):229-36. PubMed ID: 2541682 [TBL] [Abstract][Full Text] [Related]
15. Cardiac troponin I phosphorylation increases the rate of cardiac muscle relaxation. Zhang R; Zhao J; Mandveno A; Potter JD Circ Res; 1995 Jun; 76(6):1028-35. PubMed ID: 7758157 [TBL] [Abstract][Full Text] [Related]
16. Unchanged protein levels of SERCA II and phospholamban but reduced Ca2+ uptake and Ca(2+)-ATPase activity of cardiac sarcoplasmic reticulum from dilated cardiomyopathy patients compared with patients with nonfailing hearts. Schwinger RH; Böhm M; Schmidt U; Karczewski P; Bavendiek U; Flesch M; Krause EG; Erdmann E Circulation; 1995 Dec; 92(11):3220-8. PubMed ID: 7586307 [TBL] [Abstract][Full Text] [Related]
18. Phospholamban gene dosage effects in the mammalian heart. Luo W; Wolska BM; Grupp IL; Harrer JM; Haghighi K; Ferguson DG; Slack JP; Grupp G; Doetschman T; Solaro RJ; Kranias EG Circ Res; 1996 May; 78(5):839-47. PubMed ID: 8620604 [TBL] [Abstract][Full Text] [Related]
19. The role of phospholamban in the regulation of calcium transport by cardiac sarcoplasmic reticulum. Davis BA; Edes I; Gupta RC; Young EF; Kim HW; Steenaart NA; Szymanska G; Kranias EG Mol Cell Biochem; 1990 Dec; 99(2):83-8. PubMed ID: 1962847 [TBL] [Abstract][Full Text] [Related]
20. Mechanisms involved in the acidosis enhancement of the isoproterenol-induced phosphorylation of phospholamban in the intact heart. Vittone L; Mundiña-Weilenmann C; Said M; Mattiazzi A J Biol Chem; 1998 Apr; 273(16):9804-11. PubMed ID: 9545319 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]