These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 29636179)

  • 1. A biomechanical model for fibril recruitment: Evaluation in tendons and arteries.
    Bevan T; Merabet N; Hornsby J; Watton PN; Thompson MS
    J Biomech; 2018 Jun; 74():192-196. PubMed ID: 29636179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A structurally based stress-stretch relationship for tendon and ligament.
    Hurschler C; Loitz-Ramage B; Vanderby R
    J Biomech Eng; 1997 Nov; 119(4):392-9. PubMed ID: 9407276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ fibril stretch and sliding is location-dependent in mouse supraspinatus tendons.
    Connizzo BK; Sarver JJ; Han L; Soslowsky LJ
    J Biomech; 2014 Dec; 47(16):3794-8. PubMed ID: 25468300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collagen fibril diameter distribution does not reflect changes in the mechanical properties of in vitro stress-deprived tendons.
    Lavagnino M; Arnoczky SP; Frank K; Tian T
    J Biomech; 2005 Jan; 38(1):69-75. PubMed ID: 15519341
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tendon glycosaminoglycan proteoglycan sidechains promote collagen fibril sliding-AFM observations at the nanoscale.
    Rigozzi S; Müller R; Stemmer A; Snedeker JG
    J Biomech; 2013 Feb; 46(4):813-8. PubMed ID: 23219277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution.
    Weisbecker H; Unterberger MJ; Holzapfel GA
    J R Soc Interface; 2015 Apr; 12(105):. PubMed ID: 25788541
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A fibre-reinforced poroviscoelastic model accurately describes the biomechanical behaviour of the rat Achilles tendon.
    Khayyeri H; Gustafsson A; Heuijerjans A; Matikainen MK; Julkunen P; Eliasson P; Aspenberg P; Isaksson H
    PLoS One; 2015; 10(6):e0126869. PubMed ID: 26030436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanobiological modelling of tendons: Review and future opportunities.
    Thompson MS; Bajuri MN; Khayyeri H; Isaksson H
    Proc Inst Mech Eng H; 2017 May; 231(5):369-377. PubMed ID: 28427319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microstructural model of tendon failure.
    Gregory J; Hazel AL; Shearer T
    J Mech Behav Biomed Mater; 2021 Oct; 122():104665. PubMed ID: 34311323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collagen fibril morphology and organization: implications for force transmission in ligament and tendon.
    Provenzano PP; Vanderby R
    Matrix Biol; 2006 Mar; 25(2):71-84. PubMed ID: 16271455
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ageing changes in the tensile properties of tendons: influence of collagen fibril volume fraction.
    Goh KL; Holmes DF; Lu HY; Richardson S; Kadler KE; Purslow PP; Wess TJ
    J Biomech Eng; 2008 Apr; 130(2):021011. PubMed ID: 18412498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of a probabilistic microstructural model to determine reference length and toe-to-linear region transition in fibrous connective tissue.
    Hurschler C; Provenzano PP; Vanderby R
    J Biomech Eng; 2003 Jun; 125(3):415-22. PubMed ID: 12929247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative investigation of structure-function relationships in a tendon fascicle model.
    Derwin KA; Soslowsky LJ
    J Biomech Eng; 1999 Dec; 121(6):598-604. PubMed ID: 10633259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glutaraldehyde cross-linking of tendon--mechanical effects at the level of the tendon fascicle and fibril.
    Hansen P; Hassenkam T; Svensson RB; Aagaard P; Trappe T; Haraldsson BT; Kjaer M; Magnusson P
    Connect Tissue Res; 2009; 50(4):211-22. PubMed ID: 19637057
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tendon response to tensile stress: an ultrastructural investigation of collagen:proteoglycan interactions in stressed tendon.
    Cribb AM; Scott JE
    J Anat; 1995 Oct; 187 ( Pt 2)(Pt 2):423-8. PubMed ID: 7592005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale regression modeling in mouse supraspinatus tendons reveals that dynamic processes act as mediators in structure-function relationships.
    Connizzo BK; Adams SM; Adams TH; Jawad AF; Birk DE; Soslowsky LJ
    J Biomech; 2016 Jun; 49(9):1649-1657. PubMed ID: 27067362
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Equivalent stiffness after glycosaminoglycan depletion in tendon--an ultra-structural finite element model and corresponding experiments.
    Fessel G; Snedeker JG
    J Theor Biol; 2011 Jan; 268(1):77-83. PubMed ID: 20950629
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of structural anisotropic soft tissue models for simulating Achilles tendon tensile behaviour.
    Khayyeri H; Longo G; Gustafsson A; Isaksson H
    J Mech Behav Biomed Mater; 2016 Aug; 61():431-443. PubMed ID: 27108350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shear load transfer in high and low stress tendons.
    Kondratko-Mittnacht J; Duenwald-Kuehl S; Lakes R; Vanderby R
    J Mech Behav Biomed Mater; 2015 May; 45():109-20. PubMed ID: 25700261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of collagen fibrils: A two-scale discrete damage model.
    Linka K; Itskov M
    J Mech Behav Biomed Mater; 2016 May; 58():163-172. PubMed ID: 26472217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.