These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 29636254)
1. Expression of Saccharomyces cerevisiae cDNAs to enhance the growth of non-ethanol-producing S. cerevisiae strains lacking pyruvate decarboxylases. Narazaki Y; Nomura Y; Morita K; Shimizu H; Matsuda F J Biosci Bioeng; 2018 Sep; 126(3):317-321. PubMed ID: 29636254 [TBL] [Abstract][Full Text] [Related]
2. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae. Yu KO; Jung J; Ramzi AB; Kim SW; Park C; Han SO Appl Biochem Biotechnol; 2012 Feb; 166(4):856-65. PubMed ID: 22161213 [TBL] [Abstract][Full Text] [Related]
3. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering. Baek SH; Kwon EY; Bae SJ; Cho BR; Kim SY; Hahn JS Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533 [TBL] [Abstract][Full Text] [Related]
4. An internal deletion in MTH1 enables growth on glucose of pyruvate-decarboxylase negative, non-fermentative Saccharomyces cerevisiae. Oud B; Flores CL; Gancedo C; Zhang X; Trueheart J; Daran JM; Pronk JT; van Maris AJ Microb Cell Fact; 2012 Sep; 11():131. PubMed ID: 22978798 [TBL] [Abstract][Full Text] [Related]
5. Production of pyruvate from mannitol by mannitol-assimilating pyruvate decarboxylase-negative Saccharomyces cerevisiae. Yoshida S; Tanaka H; Hirayama M; Murata K; Kawai S Bioengineered; 2015; 6(6):347-50. PubMed ID: 26588105 [TBL] [Abstract][Full Text] [Related]
6. Production of 2,3-butanediol from xylose by engineered Saccharomyces cerevisiae. Kim SJ; Seo SO; Park YC; Jin YS; Seo JH J Biotechnol; 2014 Dec; 192 Pt B():376-82. PubMed ID: 24480571 [TBL] [Abstract][Full Text] [Related]
7. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae. Yamanishi M; Matsuyama T ACS Synth Biol; 2012 May; 1(5):172-80. PubMed ID: 23651155 [TBL] [Abstract][Full Text] [Related]
8. Directed evolution of pyruvate decarboxylase-negative Saccharomyces cerevisiae, yielding a C2-independent, glucose-tolerant, and pyruvate-hyperproducing yeast. van Maris AJ; Geertman JM; Vermeulen A; Groothuizen MK; Winkler AA; Piper MD; van Dijken JP; Pronk JT Appl Environ Microbiol; 2004 Jan; 70(1):159-66. PubMed ID: 14711638 [TBL] [Abstract][Full Text] [Related]
9. Effects of pyruvate decarboxylase ( Zhang W; Kang J; Wang C; Ping W; Ge J Prep Biochem Biotechnol; 2022; 52(1):62-69. PubMed ID: 33881948 [No Abstract] [Full Text] [Related]
10. Metabolic engineering of Saccharomyces cerevisiae for 2,3-butanediol production. Kim SJ; Kim JW; Lee YG; Park YC; Seo JH Appl Microbiol Biotechnol; 2017 Mar; 101(6):2241-2250. PubMed ID: 28204883 [TBL] [Abstract][Full Text] [Related]
11. Toward "homolactic" fermentation of glucose and xylose by engineered Saccharomyces cerevisiae harboring a kinetically efficient l-lactate dehydrogenase within pdc1-pdc5 deletion background. Novy V; Brunner B; Müller G; Nidetzky B Biotechnol Bioeng; 2017 Jan; 114(1):163-171. PubMed ID: 27426989 [TBL] [Abstract][Full Text] [Related]
12. Starmerella bombicola influences the metabolism of Saccharomyces cerevisiae at pyruvate decarboxylase and alcohol dehydrogenase level during mixed wine fermentation. Milanovic V; Ciani M; Oro L; Comitini F Microb Cell Fact; 2012 Feb; 11():18. PubMed ID: 22305374 [TBL] [Abstract][Full Text] [Related]
13. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae. Kondo T; Tezuka H; Ishii J; Matsuda F; Ogino C; Kondo A J Biotechnol; 2012 May; 159(1-2):32-7. PubMed ID: 22342368 [TBL] [Abstract][Full Text] [Related]
14. Improved bioethanol production using CRISPR/Cas9 to disrupt the ADH2 gene in Saccharomyces cerevisiae. Xue T; Liu K; Chen D; Yuan X; Fang J; Yan H; Huang L; Chen Y; He W World J Microbiol Biotechnol; 2018 Oct; 34(10):154. PubMed ID: 30276556 [TBL] [Abstract][Full Text] [Related]
15. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae. Curiel JA; Salvadó Z; Tronchoni J; Morales P; Rodrigues AJ; Quirós M; Gonzalez R Microb Cell Fact; 2016 Sep; 15(1):156. PubMed ID: 27627879 [TBL] [Abstract][Full Text] [Related]
16. Global Metabolic Engineering of Glycolytic Pathway via Multicopy Integration in Saccharomyces cerevisiae. Yamada R; Wakita K; Ogino H ACS Synth Biol; 2017 Apr; 6(4):659-666. PubMed ID: 28080037 [TBL] [Abstract][Full Text] [Related]
17. Dug1p Is a Cys-Gly peptidase of the gamma-glutamyl cycle of Saccharomyces cerevisiae and represents a novel family of Cys-Gly peptidases. Kaur H; Kumar C; Junot C; Toledano MB; Bachhawat AK J Biol Chem; 2009 May; 284(21):14493-502. PubMed ID: 19346245 [TBL] [Abstract][Full Text] [Related]
18. Improvement of 2,3-butanediol production by dCas9 gene expression system in Saccharomyces cerevisiae. Morita K; Seike T; Ishii J; Matsuda F; Shimizu H J Biosci Bioeng; 2022 Mar; 133(3):208-212. PubMed ID: 34998687 [TBL] [Abstract][Full Text] [Related]
19. Global rewiring of cellular metabolism renders Saccharomyces cerevisiae Crabtree negative. Dai Z; Huang M; Chen Y; Siewers V; Nielsen J Nat Commun; 2018 Aug; 9(1):3059. PubMed ID: 30076310 [TBL] [Abstract][Full Text] [Related]
20. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene. Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]