BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1628 related articles for article (PubMed ID: 29636330)

  • 1. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension: Possible Novel Therapeutic Target.
    Kikuchi N; Satoh K; Kurosawa R; Yaoita N; Elias-Al-Mamun M; Siddique MAH; Omura J; Satoh T; Nogi M; Sunamura S; Miyata S; Saito Y; Hoshikawa Y; Okada Y; Shimokawa H
    Circulation; 2018 Aug; 138(6):600-623. PubMed ID: 29636330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chrysin Alleviates Chronic Hypoxia-Induced Pulmonary Hypertension by Reducing Intracellular Calcium Concentration in Pulmonary Arterial Smooth Muscle Cells.
    Dong F; Zhang J; Zhu S; Lan T; Yang J; Li L
    J Cardiovasc Pharmacol; 2019 Nov; 74(5):426-435. PubMed ID: 31725079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of Celastramycin as a Novel Therapeutic Agent for Pulmonary Arterial Hypertension.
    Kurosawa R; Satoh K; Kikuchi N; Kikuchi H; Saigusa D; Al-Mamun ME; Siddique MAH; Omura J; Satoh T; Sunamura S; Nogi M; Numano K; Miyata S; Uruno A; Kano K; Matsumoto Y; Doi T; Aoki J; Oshima Y; Yamamoto M; Shimokawa H
    Circ Res; 2019 Jul; 125(3):309-327. PubMed ID: 31195886
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamin-related protein 1-mediated mitochondrial mitotic fission permits hyperproliferation of vascular smooth muscle cells and offers a novel therapeutic target in pulmonary hypertension.
    Marsboom G; Toth PT; Ryan JJ; Hong Z; Wu X; Fang YH; Thenappan T; Piao L; Zhang HJ; Pogoriler J; Chen Y; Morrow E; Weir EK; Rehman J; Archer SL
    Circ Res; 2012 May; 110(11):1484-97. PubMed ID: 22511751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reoxygenation Reverses Hypoxic Pulmonary Arterial Remodeling by Inducing Smooth Muscle Cell Apoptosis via Reactive Oxygen Species-Mediated Mitochondrial Dysfunction.
    Chen J; Wang YX; Dong MQ; Zhang B; Luo Y; Niu W; Li ZC
    J Am Heart Assoc; 2017 Jun; 6(6):. PubMed ID: 28645933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PAR-2 inhibition reverses experimental pulmonary hypertension.
    Kwapiszewska G; Markart P; Dahal BK; Kojonazarov B; Marsh LM; Schermuly RT; Taube C; Meinhardt A; Ghofrani HA; Steinhoff M; Seeger W; Preissner KT; Olschewski A; Weissmann N; Wygrecka M
    Circ Res; 2012 Apr; 110(9):1179-91. PubMed ID: 22461388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Emetine as a Therapeutic Agent for Pulmonary Arterial Hypertension: Novel Effects of an Old Drug.
    Siddique MAH; Satoh K; Kurosawa R; Kikuchi N; Elias-Al-Mamun M; Omura J; Satoh T; Nogi M; Sunamura S; Miyata S; Ueda H; Tokuyama H; Shimokawa H
    Arterioscler Thromb Vasc Biol; 2019 Nov; 39(11):2367-2385. PubMed ID: 31533472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smooth muscle cell-specific FoxM1 controls hypoxia-induced pulmonary hypertension.
    Dai J; Zhou Q; Tang H; Chen T; Li J; Raychaudhuri P; Yuan JX; Zhou G
    Cell Signal; 2018 Nov; 51():119-129. PubMed ID: 30092353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical role for the advanced glycation end-products receptor in pulmonary arterial hypertension etiology.
    Meloche J; Courchesne A; Barrier M; Carter S; Bisserier M; Paulin R; Lauzon-Joset JF; Breuils-Bonnet S; Tremblay É; Biardel S; Racine C; Courture C; Bonnet P; Majka SM; Deshaies Y; Picard F; Provencher S; Bonnet S
    J Am Heart Assoc; 2013 Jan; 2(1):e005157. PubMed ID: 23525442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deletion of LR11 Attenuates Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cell Proliferation With Medial Thickening in Mice.
    Jiang L; Konishi H; Nurwidya F; Satoh K; Takahashi F; Ebinuma H; Fujimura K; Takasu K; Jiang M; Shimokawa H; Bujo H; Daida H
    Arterioscler Thromb Vasc Biol; 2016 Sep; 36(9):1972-9. PubMed ID: 27493099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Notch3 signaling activation in smooth muscle cells promotes extrauterine growth restriction-induced pulmonary hypertension.
    Wang Y; Dai S; Cheng X; Prado E; Yan L; Hu J; He Q; Lv Y; Lv Y; Du L
    Nutr Metab Cardiovasc Dis; 2019 Jun; 29(6):639-651. PubMed ID: 30954415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypoxia- or PDGF-BB-dependent paxillin tyrosine phosphorylation in pulmonary hypertension is reversed by HIF-1α depletion or imatinib treatment.
    Veith C; Zakrzewicz D; Dahal BK; Bálint Z; Murmann K; Wygrecka M; Seeger W; Schermuly RT; Weissmann N; Kwapiszewska G
    Thromb Haemost; 2014 Dec; 112(6):1288-303. PubMed ID: 25231004
    [TBL] [Abstract][Full Text] [Related]  

  • 13. P21-dependent protective effects of a carbon monoxide-releasing molecule-3 in pulmonary hypertension.
    Abid S; Houssaïni A; Mouraret N; Marcos E; Amsellem V; Wan F; Dubois-Randé JL; Derumeaux G; Boczkowski J; Motterlini R; Adnot S
    Arterioscler Thromb Vasc Biol; 2014 Feb; 34(2):304-12. PubMed ID: 24334871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beraprost Upregulates KV Channel Expression and Function via EP4 Receptor in Pulmonary Artery Smooth Muscle Cells Obtained from Rats with Hypoxia-Induced Pulmonary Hypertension.
    Tian H; Fan F; Geng J; Deng J; Tian H
    J Vasc Res; 2019; 56(4):204-214. PubMed ID: 31189158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The six-transmembrane protein Stamp2 ameliorates pulmonary vascular remodeling and pulmonary hypertension in mice.
    Batool M; Berghausen EM; Zierden M; Vantler M; Schermuly RT; Baldus S; Rosenkranz S; Ten Freyhaus H
    Basic Res Cardiol; 2020 Nov; 115(6):68. PubMed ID: 33188479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated TAFI Promotes the Development of Chronic Thromboembolic Pulmonary Hypertension: A Possible Novel Therapeutic Target.
    Satoh T; Satoh K; Yaoita N; Kikuchi N; Omura J; Kurosawa R; Numano K; Al-Mamun E; Siddique MA; Sunamura S; Nogi M; Suzuki K; Miyata S; Morser J; Shimokawa H
    Circ Res; 2017 Apr; 120(8):1246-1262. PubMed ID: 28289017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Involvement of Gax gene in hypoxia-induced pulmonary hypertension, proliferation, and apoptosis of arterial smooth muscle cells.
    Xia S; Tai X; Wang Y; An X; Qian G; Dong J; Wang X; Sha B; Wang D; Murthi P; Kalionis B; Wang X; Bai C
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):66-73. PubMed ID: 20160044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ADAMTS8 Promotes the Development of Pulmonary Arterial Hypertension and Right Ventricular Failure: A Possible Novel Therapeutic Target.
    Omura J; Satoh K; Kikuchi N; Satoh T; Kurosawa R; Nogi M; Ohtsuki T; Al-Mamun ME; Siddique MAH; Yaoita N; Sunamura S; Miyata S; Hoshikawa Y; Okada Y; Shimokawa H
    Circ Res; 2019 Oct; 125(10):884-906. PubMed ID: 31556812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1.
    Wang X; Yang Y; Yang D; Tong G; Lv S; Lin X; Chen C; Dong W
    J Vasc Surg; 2016 Nov; 64(5):1468-1477. PubMed ID: 26527422
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blockade of JAK2 protects mice against hypoxia-induced pulmonary arterial hypertension by repressing pulmonary arterial smooth muscle cell proliferation.
    Zhang L; Wang Y; Wu G; Rao L; Wei Y; Yue H; Yuan T; Yang P; Xiong F; Zhang S; Zhou Q; Chen Z; Li J; Mo BW; Zhang H; Xiong W; Wang CY
    Cell Prolif; 2020 Feb; 53(2):e12742. PubMed ID: 31943454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 82.