These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 29636503)

  • 21. Elucidation of Cross-Talk and Specificity of Early Response Mechanisms to Salt and PEG-Simulated Drought Stresses in Brassica napus Using Comparative Proteomic Analysis.
    Luo J; Tang S; Peng X; Yan X; Zeng X; Li J; Li X; Wu G
    PLoS One; 2015; 10(10):e0138974. PubMed ID: 26448643
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Morphological, transcriptomics and biochemical characterization of new dwarf mutant of Brassica napus.
    Wei C; Zhu L; Wen J; Yi B; Ma C; Tu J; Shen J; Fu T
    Plant Sci; 2018 May; 270():97-113. PubMed ID: 29576090
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.
    Liu C; Zhang X; Zhang K; An H; Hu K; Wen J; Shen J; Ma C; Yi B; Tu J; Fu T
    Int J Mol Sci; 2015 Aug; 16(8):18752-77. PubMed ID: 26270661
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolomic compounds identified in Piriformospora indica-colonized Chinese cabbage roots delineate symbiotic functions of the interaction.
    Hua MD; Senthil Kumar R; Shyur LF; Cheng YB; Tian Z; Oelmüller R; Yeh KW
    Sci Rep; 2017 Aug; 7(1):9291. PubMed ID: 28839213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differential regulation of gene products in newly synthesized Brassica napus allotetraploids is not related to protein function nor subcellular localization.
    Albertin W; Alix K; Balliau T; Brabant P; Davanture M; Malosse C; Valot B; Thiellement H
    BMC Genomics; 2007 Feb; 8():56. PubMed ID: 17313678
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutualistic root endophytism is not associated with the reduction of saprotrophic traits and requires a noncompromised plant innate immunity.
    Lahrmann U; Strehmel N; Langen G; Frerigmann H; Leson L; Ding Y; Scheel D; Herklotz S; Hilbert M; Zuccaro A
    New Phytol; 2015 Aug; 207(3):841-57. PubMed ID: 25919406
    [TBL] [Abstract][Full Text] [Related]  

  • 27. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum.
    Cao JY; Xu YP; Cai XZ
    J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Silicon supply affects the root transcriptome of Brassica napus L.
    Haddad C; Trouverie J; Arkoun M; Yvin JC; Caïus J; Brunaud V; Laîné P; Etienne P
    Planta; 2019 May; 249(5):1645-1651. PubMed ID: 30820649
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus.
    Li Y; Wang X; Zhang H; Wang S; Ye X; Shi L; Xu F; Ding G
    PLoS One; 2019; 14(7):e0220374. PubMed ID: 31344115
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanisms of
    Kundu A; Vadassery J
    Plant Signal Behav; 2022 Dec; 17(1):2096785. PubMed ID: 35811563
    [No Abstract]   [Full Text] [Related]  

  • 31. Piriformospora indica confers salinity tolerance on tomato (Lycopersicon esculentum Mill.) through amelioration of nutrient accumulation, K
    Ghorbani A; Omran VOG; Razavi SM; Pirdashti H; Ranjbar M
    Plant Cell Rep; 2019 Sep; 38(9):1151-1163. PubMed ID: 31152194
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure.
    Yang P; Li Y; He C; Yan J; Zhang W; Li X; Xiang F; Zuo Z; Li X; Zhu Y; Liu X; Zhao X
    J Proteomics; 2020 Mar; 214():103621. PubMed ID: 31863931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The interaction of Arabidopsis with Piriformospora indica shifts from initial transient stress induced by fungus-released chemical mediators to a mutualistic interaction after physical contact of the two symbionts.
    Vahabi K; Sherameti I; Bakshi M; Mrozinska A; Ludwig A; Reichelt M; Oelmüller R
    BMC Plant Biol; 2015 Feb; 15():58. PubMed ID: 25849363
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis.
    Vadassery J; Tripathi S; Prasad R; Varma A; Oelmüller R
    J Plant Physiol; 2009 Aug; 166(12):1263-1274. PubMed ID: 19386380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Morphophysiological and molecular evidence supporting the augmentative role of Piriformospora indica in mitigation of salinity in Cucumis melo L.
    Hassani D; Khalid M; Huang D; Zhang YD
    Acta Biochim Biophys Sin (Shanghai); 2019 Mar; 51(3):301-312. PubMed ID: 30883647
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparative proteome analysis of metabolic changes by low phosphorus stress in two Brassica napus genotypes.
    Yao Y; Sun H; Xu F; Zhang X; Liu S
    Planta; 2011 Mar; 233(3):523-37. PubMed ID: 21110039
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological and TMT-based quantitative proteomic responses of barley to aluminium stress under phosphorus-Piriformospora indica interaction.
    Feng Q; Sehar S; Zhou F; Wei D; Askri SMH; Ma Z; Adil MF; Shamsi IH
    Plant Physiol Biochem; 2023 Mar; 196():634-646. PubMed ID: 36791535
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica.
    Zuccaro A; Lahrmann U; Güldener U; Langen G; Pfiffi S; Biedenkopf D; Wong P; Samans B; Grimm C; Basiewicz M; Murat C; Martin F; Kogel KH
    PLoS Pathog; 2011 Oct; 7(10):e1002290. PubMed ID: 22022265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Screening of candidate gene responses to cadmium stress by RNA sequencing in oilseed rape (Brassica napus L.).
    Ding Y; Jian H; Wang T; Di F; Wang J; Li J; Liu L
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32433-32446. PubMed ID: 30232771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Brassica napus seed endosperm - metabolism and signaling in a dead end tissue.
    Lorenz C; Rolletschek H; Sunderhaus S; Braun HP
    J Proteomics; 2014 Aug; 108():382-426. PubMed ID: 24906024
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.