These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 29636550)

  • 1. Distinguishing butchery cut marks from crocodile bite marks through machine learning methods.
    Domínguez-Rodrigo M; Baquedano E
    Sci Rep; 2018 Apr; 8(1):5786. PubMed ID: 29636550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning and taphonomy: high accuracy in the classification of cut marks made on fleshed and defleshed bones using convolutional neural networks.
    Cifuentes-Alcobendas G; Domínguez-Rodrigo M
    Sci Rep; 2019 Dec; 9(1):18933. PubMed ID: 31831808
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Taphonomy of fossils from the hominin-bearing deposits at Dikika, Ethiopia.
    Thompson JC; McPherron SP; Bobe R; Reed D; Barr WA; Wynn JG; Marean CW; Geraads D; Alemseged Z
    J Hum Evol; 2015 Sep; 86():112-35. PubMed ID: 26277305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating hominin carnivory in the Okote Member of Koobi Fora, Kenya with an actualistic model of carcass consumption and traces of butchery on the elbow.
    Merritt SR
    J Hum Evol; 2017 Nov; 112():105-133. PubMed ID: 28867279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hominid butchers and biting crocodiles in the African Plio-Pleistocene.
    Sahle Y; El Zaatari S; White TD
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13164-13169. PubMed ID: 29109249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do human butchery patterns exist? A study of the interaction of randomness and channelling in the distribution of cut marks on long bones.
    Pizarro-Monzo M; Prendergast ME; Gidna AO; Baquedano E; Mora R; Gonzalez-Aguilera D; Mate-Gonzalez MA; Domínguez-Rodrigo M
    J R Soc Interface; 2021 Jan; 18(174):20200958. PubMed ID: 33499767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new high-resolution 3-D quantitative method for identifying bone surface modifications with implications for the Early Stone Age archaeological record.
    Pante MC; Muttart MV; Keevil TL; Blumenschine RJ; Njau JK; Merritt SR
    J Hum Evol; 2017 Jan; 102():1-11. PubMed ID: 28012460
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A diagnosis of crocodile feeding traces on larger mammal bone, with fossil examples from the Plio-Pleistocene Olduvai Basin, Tanzania.
    Njau JK; Blumenschine RJ
    J Hum Evol; 2006 Feb; 50(2):142-62. PubMed ID: 16263152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The trajectory of bone surface modification studies in paleoanthropology and a new Bayesian solution to the identification controversy.
    Harris JA; Marean CW; Ogle K; Thompson J
    J Hum Evol; 2017 Sep; 110():69-81. PubMed ID: 28778462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep classification of cut-marks on bones from Arroyo del Vizcaíno (Uruguay).
    Domínguez-Rodrigo M; Baquedano E; Varela L; Tambusso PS; Melián MJ; Fariña RA
    Proc Biol Sci; 2021 Jul; 288(1954):20210711. PubMed ID: 34256002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone taphonomy of the Schöningen "Spear Horizon South" and its implications for site formation and hominin meat provisioning.
    Starkovich BM; Conard NJ
    J Hum Evol; 2015 Dec; 89():154-71. PubMed ID: 26626957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early Pleistocene cut marked hominin fossil from Koobi Fora, Kenya.
    Pobiner B; Pante M; Keevil T
    Sci Rep; 2023 Jun; 13(1):9896. PubMed ID: 37365179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oldest hominin butchery in European mid-latitudes at the Jaramillo site of Untermassfeld (Thuringia, Germany).
    Landeck G; Garcia Garriga J
    J Hum Evol; 2016 May; 94():53-71. PubMed ID: 27178458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The earliest cut marks of Europe: a discussion on hominin subsistence patterns in the Orce sites (Baza basin, SE Spain).
    Espigares MP; Palmqvist P; Guerra-Merchán A; Ros-Montoya S; García-Aguilar JM; Rodríguez-Gómez G; Serrano FJ; Martínez-Navarro B
    Sci Rep; 2019 Oct; 9(1):15408. PubMed ID: 31659231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The larger mammal fauna from the Lower Paleolithic Schöningen Spear site and its contribution to hominin subsistence.
    Van Kolfschoten T; Buhrs E; Verheijen I
    J Hum Evol; 2015 Dec; 89():138-53. PubMed ID: 26607346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New evidence for hominin carcass processing strategies at 1.5 Ma, Koobi Fora, Kenya.
    Pobiner BL; Rogers MJ; Monahan CM; Harris JW
    J Hum Evol; 2008 Jul; 55(1):103-30. PubMed ID: 18514259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new horned crocodile from the Plio-Pleistocene hominid sites at Olduvai Gorge, Tanzania.
    Brochu CA; Njau J; Blumenschine RJ; Densmore LD
    PLoS One; 2010 Feb; 5(2):e9333. PubMed ID: 20195356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning, bootstrapping, null models, and why we are still not 100% sure which bone surface modifications were made by crocodiles.
    McPherron SP; Archer W; Otárola-Castillo ER; Torquato MG; Keevil TL
    J Hum Evol; 2022 Mar; 164():103071. PubMed ID: 34635347
    [No Abstract]   [Full Text] [Related]  

  • 19. Configurational approach to identifying the earliest hominin butchers.
    Domínguez-Rodrigo M; Pickering TR; Bunn HT
    Proc Natl Acad Sci U S A; 2010 Dec; 107(49):20929-34. PubMed ID: 21078985
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Artificial intelligence provides greater accuracy in the classification of modern and ancient bone surface modifications.
    Domínguez-Rodrigo M; Cifuentes-Alcobendas G; Jiménez-García B; Abellán N; Pizarro-Monzo M; Organista E; Baquedano E
    Sci Rep; 2020 Nov; 10(1):18862. PubMed ID: 33139821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.