BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29636821)

  • 1. Engineering and application of synthetic
    Hwang HJ; Lee SY; Lee PC
    Biotechnol Biofuels; 2018; 11():103. PubMed ID: 29636821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of an oxygen-inducible nar promoter system in metabolic engineering for production of biochemicals in Escherichia coli.
    Hwang HJ; Kim JW; Ju SY; Park JH; Lee PC
    Biotechnol Bioeng; 2017 Feb; 114(2):468-473. PubMed ID: 27543929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico and in vivo stability analysis of a heterologous biosynthetic pathway for 1,4-butanediol production in metabolically engineered E. coli.
    Miklóssy I; Bodor Z; Sinkler R; Orbán KC; Lányi S; Albert B
    J Biomol Struct Dyn; 2017 Jul; 35(9):1874-1889. PubMed ID: 27492654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Construction of synthetic promoters for Escherichia coli and application in the biosynthesis of cis,cis-muconic acid].
    Wu Y; Zhang Y; Tu R; Liu H; Wang Q
    Sheng Wu Gong Cheng Xue Bao; 2013 Jun; 29(6):760-71. PubMed ID: 24063236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of an oxygen-dependent inducible promoter, the nar promoter of Escherichia coli, to utilize in metabolic engineering.
    Han SJ; Chang HN; Lee J
    Biotechnol Bioeng; 2001 Mar; 72(5):573-6. PubMed ID: 11460248
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A shortened, two-enzyme pathway for 2,3-butanediol production in Escherichia coli.
    Reshamwala SMS; Deb SS; Lali AM
    J Ind Microbiol Biotechnol; 2017 Sep; 44(9):1273-1277. PubMed ID: 28547323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing and utilizing oxygen-dependent promoters for efficient dynamic metabolic engineering.
    Wichmann J; Behrendt G; Boecker S; Klamt S
    Metab Eng; 2023 May; 77():199-207. PubMed ID: 37054967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining CRISPR and CRISPRi Systems for Metabolic Engineering of E. coli and 1,4-BDO Biosynthesis.
    Wu MY; Sung LY; Li H; Huang CH; Hu YC
    ACS Synth Biol; 2017 Dec; 6(12):2350-2361. PubMed ID: 28854333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of pure meso-2,3-butanediol from crude glycerol using an engineered metabolic pathway in Escherichia coli.
    Lee S; Kim B; Park K; Um Y; Lee J
    Appl Biochem Biotechnol; 2012 Apr; 166(7):1801-13. PubMed ID: 22434350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of an oxygen-dependent inducible promoter, the Escherichia coli nar promoter, in gram-negative host strains.
    Lee KH; Cho MH; Chung T; Chang HN; Lim SH; Lee J
    Biotechnol Bioeng; 2003 May; 82(3):271-7. PubMed ID: 12599253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Engineering of
    Liu Y; Cen X; Liu D; Chen Z
    ACS Synth Biol; 2021 Aug; 10(8):1946-1955. PubMed ID: 34264647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli for 2,3-butanediol production from cellulosic biomass by using glucose-inducible gene expression system.
    Sathesh-Prabu C; Kim D; Lee SK
    Bioresour Technol; 2020 Aug; 309():123361. PubMed ID: 32305846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane.
    Nguyen AD; Hwang IY; Lee OK; Kim D; Kalyuzhnaya MG; Mariyana R; Hadiyati S; Kim MS; Lee EY
    Metab Eng; 2018 May; 47():323-333. PubMed ID: 29673960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient reduction of the formation of by-products and improvement of production yield of 2,3-butanediol by a combined deletion of alcohol dehydrogenase, acetate kinase-phosphotransacetylase, and lactate dehydrogenase genes in metabolically engineered Klebsiella oxytoca in mineral salts medium.
    Jantama K; Polyiam P; Khunnonkwao P; Chan S; Sangproo M; Khor K; Jantama SS; Kanchanatawee S
    Metab Eng; 2015 Jul; 30():16-26. PubMed ID: 25895450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-tuning the expression of pathway gene in yeast using a regulatory library formed by fusing a synthetic minimal promoter with different Kozak variants.
    Xu L; Liu P; Dai Z; Fan F; Zhang X
    Microb Cell Fact; 2021 Jul; 20(1):148. PubMed ID: 34320991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic engineering of Zymomonas mobilis for 2,3-butanediol production from lignocellulosic biomass sugars.
    Yang S; Mohagheghi A; Franden MA; Chou YC; Chen X; Dowe N; Himmel ME; Zhang M
    Biotechnol Biofuels; 2016; 9(1):189. PubMed ID: 27594916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fine tuning the transcription of ldhA for D-lactate production.
    Zhou L; Shen W; Niu DD; Tian KM; Prior BA; Shi GY; Singh S; Wang ZX
    J Ind Microbiol Biotechnol; 2012 Aug; 39(8):1209-17. PubMed ID: 22430499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and characterization of an oxygen-dependent inducible promoter system, the modified nar promoter in a mutant Escherichia coli.
    Han SJ; Chang HN; DeMoss JA; Suh EJ; Lee J
    Biotechnol Bioeng; 2000 Apr; 68(1):115-20. PubMed ID: 10699879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering.
    Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ
    Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction and model-based analysis of a promoter library for E. coli: an indispensable tool for metabolic engineering.
    De Mey M; Maertens J; Lequeux GJ; Soetaert WK; Vandamme EJ
    BMC Biotechnol; 2007 Jun; 7():34. PubMed ID: 17572914
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.