These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 29637030)

  • 1. An Alternative Myoelectric Pattern Recognition Approach for the Control of Hand Prostheses: A Case Study of Use in Daily Life by a Dysmelia Subject.
    Mastinu E; Ahlberg J; Lendaro E; Hermansson L; Hakansson B; Ortiz-Catalan M
    IEEE J Transl Eng Health Med; 2018; 6():2600112. PubMed ID: 29637030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control.
    Resnik L; Huang HH; Winslow A; Crouch DL; Zhang F; Wolk N
    J Neuroeng Rehabil; 2018 Mar; 15(1):23. PubMed ID: 29544501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved Prosthetic Control Based on Myoelectric Pattern Recognition via Wavelet-Based De-Noising.
    Maier J; Naber A; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):506-514. PubMed ID: 29432116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of User Practice on Prosthetic Finger Control With an Intuitive Myoelectric Decoder.
    Krasoulis A; Vijayakumar S; Nazarpour K
    Front Neurosci; 2019; 13():891. PubMed ID: 31551674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification complexity in myoelectric pattern recognition.
    Nilsson N; Håkansson B; Ortiz-Catalan M
    J Neuroeng Rehabil; 2017 Jul; 14(1):68. PubMed ID: 28693533
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardinality as a highly descriptive feature in myoelectric pattern recognition for decoding motor volition.
    Ortiz-Catalan M
    Front Neurosci; 2015; 9():416. PubMed ID: 26578873
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Prosthetic Hand Body Area Controller Based on Efficient Pattern Recognition Control Strategies.
    Benatti S; Milosevic B; Farella E; Gruppioni E; Benini L
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28420135
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A myoelectric prosthetic hand with muscle synergy-based motion determination and impedance model-based biomimetic control.
    Furui A; Eto S; Nakagaki K; Shimada K; Nakamura G; Masuda A; Chin T; Tsuji T
    Sci Robot; 2019 Jun; 4(31):. PubMed ID: 33137769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implications of EMG channel count: enhancing pattern recognition online prosthetic testing.
    Simon AM; Newkirk K; Miller LA; Turner KL; Brenner K; Stephens M; Hargrove LJ
    Front Rehabil Sci; 2024; 5():1345364. PubMed ID: 38500790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative study of state-of-the-art myoelectric controllers for multigrasp prosthetic hands.
    Segil JL; Controzzi M; Weir RF; Cipriani C
    J Rehabil Res Dev; 2014; 51(9):1439-54. PubMed ID: 25803683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. User Performance With a Transradial Multi-Articulating Hand Prosthesis During Pattern Recognition and Direct Control Home Use.
    Simon AM; Turner KL; Miller LA; Potter BK; Beachler MD; Dumanian GA; Hargrove LJ; Kuiken TA
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():271-281. PubMed ID: 36355739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ascertaining the optimal myoelectric signal recording duration for pattern recognition based prostheses control.
    Asogbon MG; Samuel OW; Nsugbe E; Li Y; Kulwa F; Mzurikwao D; Chen S; Li G
    Front Neurosci; 2023; 17():1018037. PubMed ID: 36908798
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Real-Time EMG Based Pattern Recognition Control for Hand Prostheses: A Review on Existing Methods, Challenges and Future Implementation.
    Parajuli N; Sreenivasan N; Bifulco P; Cesarelli M; Savino S; Niola V; Esposito D; Hamilton TJ; Naik GR; Gunawardana U; Gargiulo GD
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31652616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis.
    Markovic M; Dosen S; Popovic D; Graimann B; Farina D
    J Neural Eng; 2015 Dec; 12(6):066022. PubMed ID: 26529274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis.
    Dosen S; Markovic M; Somer K; Graimann B; Farina D
    J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a Parent Wireless Assistive Interface for Myoelectric Prosthetic Hands for Children.
    Hiyoshi Y; Murai Y; Yabuki Y; Takahana K; Morishita S; Jiang Y; Togo S; Takayama S; Yokoi H
    Front Neurorobot; 2018; 12():48. PubMed ID: 30116188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experience with Swedish multifunctional prosthetic hands controlled by pattern recognition of multiple myoelectric signals.
    Almström C; Herberts P; Körner L
    Int Orthop; 1981; 5(1):15-21. PubMed ID: 7275404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alternative muscle synergy patterns of upper limb amputees.
    Wang X; Wang J; Fei N; Duanmu D; Feng B; Li X; Ip WY; Hu Y
    Cogn Neurodyn; 2024 Jun; 18(3):1119-1133. PubMed ID: 38826662
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term results of early myoelectric prosthesis fittings: A prospective case-control study.
    Sjöberg L; Lindner H; Hermansson L
    Prosthet Orthot Int; 2018 Oct; 42(5):527-533. PubMed ID: 28905686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.