These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 29637030)

  • 21. Pattern recognition and direct control home use of a multi-articulating hand prosthesis.
    Simon AM; Turner KL; Miller LA; Hargrove LJ; Kuiken TA
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():386-391. PubMed ID: 31374660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of Transient Myoelectric Signals for the Control of Multi-Grasp Hand Prostheses.
    Kanitz G; Cipriani C; Edin BB
    IEEE Trans Neural Syst Rehabil Eng; 2018 Sep; 26(9):1756-1764. PubMed ID: 30072331
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Clinical outcomes of a low-cost single-channel myoelectric-interface three-dimensional hand prosthesis.
    Ku I; Lee GK; Park CY; Lee J; Jeong E
    Arch Plast Surg; 2019 Jul; 46(4):303-310. PubMed ID: 31336417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Learning from demonstration: Teaching a myoelectric prosthesis with an intact limb via reinforcement learning.
    Vasan G; Pilarski PM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1457-1464. PubMed ID: 28814025
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Myoelectric control of prosthetic hands: state-of-the-art review.
    Geethanjali P
    Med Devices (Auckl); 2016; 9():247-55. PubMed ID: 27555799
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Locomotor Adaptation by Transtibial Amputees Walking With an Experimental Powered Prosthesis Under Continuous Myoelectric Control.
    Huang S; Wensman JP; Ferris DP
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):573-81. PubMed ID: 26057851
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring at-home prosthesis control improvements through real-time data logging.
    Osborn LE; Moran CW; Dodd LD; Sutton EE; Norena Acosta N; Wormley JM; Pyles CO; Gordge KD; Nordstrom MJ; Butkus JA; Forsberg JA; Pasquina PF; Fifer MS; Armiger RS
    J Neural Eng; 2022 May; 19(3):. PubMed ID: 35523131
    [No Abstract]   [Full Text] [Related]  

  • 28. Offline accuracy: A potentially misleading metric in myoelectric pattern recognition for prosthetic control.
    Ortiz-Catalan M; Rouhani F; Branemark R; Hakansson B
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():1140-3. PubMed ID: 26736467
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Reality of Myoelectric Prostheses: Understanding What Makes These Devices Difficult for Some Users to Control.
    Chadwell A; Kenney L; Thies S; Galpin A; Head J
    Front Neurorobot; 2016; 10():7. PubMed ID: 27597823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Motor unit drive: a neural interface for real-time upper limb prosthetic control.
    Twardowski MD; Roy SH; Li Z; Contessa P; De Luca G; Kline JC
    J Neural Eng; 2019 Feb; 16(1):016012. PubMed ID: 30524105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-Temporal Inertial Measurements Feature Extraction Improves Hand Movement Pattern Recognition without Electromyography.
    Khushaba RN; Krasoulis A; Al-Jumaily A; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():2108-2111. PubMed ID: 30440819
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Causes of Performance Degradation in Non-invasive Electromyographic Pattern Recognition in Upper Limb Prostheses.
    Kyranou I; Vijayakumar S; Erden MS
    Front Neurorobot; 2018; 12():58. PubMed ID: 30297994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. IMU-Based Wrist Rotation Control of a Transradial Myoelectric Prosthesis.
    Bennett DA; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):419-427. PubMed ID: 28320673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive Hybrid Classifier for Myoelectric Pattern Recognition Against the Interferences of Outlier Motion, Muscle Fatigue, and Electrode Doffing.
    Ding Q; Zhao X; Han J; Bu C; Wu C
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1071-1080. PubMed ID: 30998472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Myoelectric Pattern Recognition for Controlling a Robotic Hand: A Feasibility Study in Stroke.
    Lu Z; Tong KY; Zhang X; Li S; Zhou P
    IEEE Trans Biomed Eng; 2019 Feb; 66(2):365-372. PubMed ID: 29993410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Realizing Efficient EMG-Based Prosthetic Control Strategy.
    Li G; Samuel OW; Lin C; Asogbon MG; Fang P; Idowu PO
    Adv Exp Med Biol; 2019; 1101():149-166. PubMed ID: 31729675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interface Prostheses With Classifier-Feedback-Based User Training.
    Fang Y; Zhou D; Li K; Liu H
    IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744
    [TBL] [Abstract][Full Text] [Related]  

  • 39. High density electromyography data of normally limbed and transradial amputee subjects for multifunction prosthetic control.
    Daley H; Englehart K; Hargrove L; Kuruganti U
    J Electromyogr Kinesiol; 2012 Jun; 22(3):478-84. PubMed ID: 22269773
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional comparison of upper extremity amputees using myoelectric and conventional prostheses.
    Stein RB; Walley M
    Arch Phys Med Rehabil; 1983 Jun; 64(6):243-8. PubMed ID: 6860093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.