These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29637211)

  • 21. Rheology of sediment transported by a laminar flow.
    Houssais M; Ortiz CP; Durian DJ; Jerolmack DJ
    Phys Rev E; 2016 Dec; 94(6-1):062609. PubMed ID: 28085450
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fine structures in sheared granular flows.
    Polashenski W; Zamankhan P; Mäkiharju S; Zamankhan P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Aug; 66(2 Pt 1):021303. PubMed ID: 12241166
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microscopic Origins of Shear Jamming for 2D Frictional Grains.
    Wang D; Ren J; Dijksman JA; Zheng H; Behringer RP
    Phys Rev Lett; 2018 May; 120(20):208004. PubMed ID: 29864324
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quasistatic to inertial transition in granular materials and the role of fluctuations.
    Gaume J; Chambon G; Naaim M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):051304. PubMed ID: 22181408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flow-induced agitations create a granular fluid: effective viscosity and fluctuations.
    Nichol K; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061309. PubMed ID: 23005088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flow reversal triggers discontinuous shear thickening response across an erodible granular bed in a Couette-Poiseuille-like flow.
    Lee KL; Yang FL
    Phys Rev E; 2022 May; 105(5):L052901. PubMed ID: 35706163
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Rheophysics of dense granular materials: discrete simulation of plane shear flows.
    da Cruz F; Emam S; Prochnow M; Roux JN; Chevoir F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021309. PubMed ID: 16196558
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phase diagram for inertial granular flows.
    DeGiuli E; McElwaine JN; Wyart M
    Phys Rev E; 2016 Jul; 94(1-1):012904. PubMed ID: 27575203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurements of the yield stress in frictionless granular systems.
    Xu N; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 1):061303. PubMed ID: 16906818
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry.
    Bausch AR; Ziemann F; Boulbitch AA; Jacobson K; Sackmann E
    Biophys J; 1998 Oct; 75(4):2038-49. PubMed ID: 9746546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Slowly sheared dense granular flows: crystallization and nonunique final states.
    Tsai JC; Gollub JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Sep; 70(3 Pt 1):031303. PubMed ID: 15524517
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arrest stress of uniformly sheared wet granular matter.
    Rahbari SH; Brinkmann M; Vollmer J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062201. PubMed ID: 26172699
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheology in dense assemblies of spherocylinders: Frictional vs. frictionless.
    Nath T; Heussinger C
    Eur Phys J E Soft Matter; 2019 Dec; 42(12):157. PubMed ID: 31863209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental study of granular flows in a rough annular shear cell.
    Jasti V; Higgs CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):041306. PubMed ID: 18999417
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Relaxation-type nonlocal inertial-number rheology for dry granular flows.
    Lee KL; Yang FL
    Phys Rev E; 2017 Dec; 96(6-1):062909. PubMed ID: 29347369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transients in sheared granular matter.
    Utter B; Behringer RP
    Eur Phys J E Soft Matter; 2004 Aug; 14(4):373-80. PubMed ID: 15338433
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unifying suspension and granular rheology.
    Boyer F; Guazzelli É; Pouliquen O
    Phys Rev Lett; 2011 Oct; 107(18):188301. PubMed ID: 22107679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transition from steady shear to oscillatory shear rheology of dense suspensions.
    Dong J; Trulsson M
    Phys Rev E; 2020 Nov; 102(5-1):052605. PubMed ID: 33327063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Local Rheology Relation with Variable Yield Stress Ratio across Dry, Wet, Dense, and Dilute Granular Flows.
    Pähtz T; Durán O; de Klerk DN; Govender I; Trulsson M
    Phys Rev Lett; 2019 Jul; 123(4):048001. PubMed ID: 31491250
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Power-Law Scaling in Granular Rheology across Flow Geometries.
    Kim S; Kamrin K
    Phys Rev Lett; 2020 Aug; 125(8):088002. PubMed ID: 32909790
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.