These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 29637211)

  • 41. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Rheological Signature of Frictional Interactions in Shear Thickening Suspensions.
    Royer JR; Blair DL; Hudson SD
    Phys Rev Lett; 2016 May; 116(18):188301. PubMed ID: 27203345
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Local rheological measurements in the granular flow around an intruder.
    Seguin A; Coulais C; Martinez F; Bertho Y; Gondret P
    Phys Rev E; 2016 Jan; 93(1):012904. PubMed ID: 26871140
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Normal stresses in shear thickening granular suspensions.
    Pan Z; de Cagny H; Habibi M; Bonn D
    Soft Matter; 2017 May; 13(20):3734-3740. PubMed ID: 28463377
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rheology of dense granular mixtures: particle-size distributions, boundary conditions, and collisional time scales.
    Yohannes B; Hill KM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061301. PubMed ID: 21230666
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Granular shear flow dynamics and forces: experiment and continuum theory.
    Bocquet L; Losert W; Schalk D; Lubensky TC; Gollub JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011307. PubMed ID: 11800693
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Torque measurements and numerical determination in differentially rotating wide gap Taylor-Couette flow.
    Merbold S; Brauckmann HJ; Egbers C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):023014. PubMed ID: 23496617
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rheology of granular materials composed of crushable particles.
    Nguyen DH; Azéma É; Sornay P; Radjaï F
    Eur Phys J E Soft Matter; 2018 Apr; 41(4):50. PubMed ID: 29644548
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Regime transitions of granular flow in a shear cell: a micromechanical study.
    Wang X; Zhu HP; Luding S; Yu AB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032203. PubMed ID: 24125257
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A CFD study of the deep bed filtration mechanism for submicron/nano-particle suspension.
    Tung KL; Chang YL; Lai JY; Chang CH; Chuang CJ
    Water Sci Technol; 2004; 50(12):255-64. PubMed ID: 15686029
    [TBL] [Abstract][Full Text] [Related]  

  • 51. NMR velocimetry studies of the steady-shear rheology of a concentrated hard-sphere colloidal system.
    Wassenius H; Callaghan PT
    Eur Phys J E Soft Matter; 2005 Sep; 18(1):69-84. PubMed ID: 16172805
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Flow in linearly sheared two-dimensional foams: From bubble to bulk scale.
    Katgert G; Latka A; Möbius ME; van Hecke M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 2):066318. PubMed ID: 19658605
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows.
    Faug T; Beguin R; Chanut B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021305. PubMed ID: 19792117
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Diverging viscosity and soft granular rheology in non-Brownian suspensions.
    Kawasaki T; Coslovich D; Ikeda A; Berthier L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jan; 91(1):012203. PubMed ID: 25679615
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Size-dependence of the flow threshold in dense granular materials.
    Liu D; Henann DL
    Soft Matter; 2018 Jun; 14(25):5294-5305. PubMed ID: 29900464
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Lubrication model of suspension flow in a hydraulic fracture with frictional rheology for shear-induced migration and jamming.
    Dontsov EV; Boronin SA; Osiptsov AA; Derbyshev DY
    Proc Math Phys Eng Sci; 2019 Jun; 475(2226):20190039. PubMed ID: 31293359
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microscopic Origin of Frictional Rheology in Dense Suspensions: Correlations in Force Space.
    Thomas JE; Ramola K; Singh A; Mari R; Morris JF; Chakraborty B
    Phys Rev Lett; 2018 Sep; 121(12):128002. PubMed ID: 30296153
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Solid-fluid transition in a granular shear flow.
    Orpe AV; Khakhar DV
    Phys Rev Lett; 2004 Aug; 93(6):068001. PubMed ID: 15323663
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Temporal force fluctuations measured by tracking individual particles in granular materials under shear.
    Corwin EI; Hoke ET; Jaeger HM; Nagel SR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061308. PubMed ID: 18643258
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region.
    Shojaaee Z; Roux JN; Chevoir F; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011301. PubMed ID: 23005405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.