These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

839 related articles for article (PubMed ID: 29637403)

  • 61. Microaneurysm Detection Using Principal Component Analysis and Machine Learning Methods.
    Cao W; Czarnek N; Shan J; Li L
    IEEE Trans Nanobioscience; 2018 Jul; 17(3):191-198. PubMed ID: 29994317
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Comparison of the predictive outcomes for anti-tuberculosis drug-induced hepatotoxicity by different machine learning techniques.
    Lai NH; Shen WC; Lee CN; Chang JC; Hsu MC; Kuo LN; Yu MC; Chen HY
    Comput Methods Programs Biomed; 2020 May; 188():105307. PubMed ID: 31911332
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The 30-days hospital readmission risk in diabetic patients: predictive modeling with machine learning classifiers.
    Shang Y; Jiang K; Wang L; Zhang Z; Zhou S; Liu Y; Dong J; Wu H
    BMC Med Inform Decis Mak; 2021 Jul; 21(Suppl 2):57. PubMed ID: 34330267
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Data mining methods in the prediction of Dementia: A real-data comparison of the accuracy, sensitivity and specificity of linear discriminant analysis, logistic regression, neural networks, support vector machines, classification trees and random forests.
    Maroco J; Silva D; Rodrigues A; Guerreiro M; Santana I; de Mendonça A
    BMC Res Notes; 2011 Aug; 4():299. PubMed ID: 21849043
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparative Analysis of Classification Methods with PCA and LDA for Diabetes.
    Choubey DK; Kumar M; Shukla V; Tripathi S; Dhandhania VK
    Curr Diabetes Rev; 2020; 16(8):833-850. PubMed ID: 31971112
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Statistical-learning strategies generate only modestly performing predictive models for urinary symptoms following external beam radiotherapy of the prostate: A comparison of conventional and machine-learning methods.
    Yahya N; Ebert MA; Bulsara M; House MJ; Kennedy A; Joseph DJ; Denham JW
    Med Phys; 2016 May; 43(5):2040. PubMed ID: 27147316
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Building Risk Prediction Models for Type 2 Diabetes Using Machine Learning Techniques.
    Xie Z; Nikolayeva O; Luo J; Li D
    Prev Chronic Dis; 2019 Sep; 16():E130. PubMed ID: 31538566
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Clinical Decision Support System for Diabetic Patients by Predicting Type 2 Diabetes Using Machine Learning Algorithms.
    Islam R; Sultana A; Tuhin MN; Saikat MSH; Islam MR
    J Healthc Eng; 2023; 2023():6992441. PubMed ID: 37287539
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Machine learning-based classification of valvular heart disease using cardiovascular risk factors.
    Aslam MU; Xu S; Hussain S; Waqas M; Abiodun NL
    Sci Rep; 2024 Oct; 14(1):24396. PubMed ID: 39420025
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Comparison of machine-learning algorithms to build a predictive model for detecting undiagnosed diabetes - ELSA-Brasil: accuracy study.
    Olivera AR; Roesler V; Iochpe C; Schmidt MI; Vigo Á; Barreto SM; Duncan BB
    Sao Paulo Med J; 2017; 135(3):234-246. PubMed ID: 28746659
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Machine learning approaches to constructing predictive models of vitamin D deficiency in a hypertensive population: a comparative study.
    Garcia Carretero R; Vigil-Medina L; Barquero-Perez O; Mora-Jimenez I; Soguero-Ruiz C; Ramos-Lopez J
    Inform Health Soc Care; 2021 Dec; 46(4):355-369. PubMed ID: 33792475
    [No Abstract]   [Full Text] [Related]  

  • 72. Evaluation of Prognosis in Nasopharyngeal Cancer Using Machine Learning.
    Akcay M; Etiz D; Celik O; Ozen A
    Technol Cancer Res Treat; 2020; 19():1533033820909829. PubMed ID: 32138606
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Direct Kernel Perceptron (DKP): ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation.
    Fernández-Delgado M; Cernadas E; Barro S; Ribeiro J; Neves J
    Neural Netw; 2014 Feb; 50():60-71. PubMed ID: 24287336
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Developing Multiagent E-Learning System-Based Machine Learning and Feature Selection Techniques.
    Hessen SH; Abdul-Kader HM; Khedr AE; Salem RK
    Comput Intell Neurosci; 2022; 2022():2941840. PubMed ID: 35140765
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Soft Clustering for Enhancing the Diagnosis of Chronic Diseases over Machine Learning Algorithms.
    Aldhyani THH; Alshebami AS; Alzahrani MY
    J Healthc Eng; 2020; 2020():4984967. PubMed ID: 32211144
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Involvement of Machine Learning for Breast Cancer Image Classification: A Survey.
    Nahid AA; Kong Y
    Comput Math Methods Med; 2017; 2017():3781951. PubMed ID: 29463985
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Using a multi-staged strategy based on machine learning and mathematical modeling to predict genotype-phenotype risk patterns in diabetic kidney disease: a prospective case-control cohort analysis.
    Leung RK; Wang Y; Ma RC; Luk AO; Lam V; Ng M; So WY; Tsui SK; Chan JC
    BMC Nephrol; 2013 Jul; 14():162. PubMed ID: 23879411
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Robust Estimation of Breast Cancer Incidence Risk in Presence of Incomplete or Inaccurate Information.
    Kakileti ST; Manjunath G; Dekker A; Wee L
    Asian Pac J Cancer Prev; 2020 Aug; 21(8):2307-2313. PubMed ID: 32856859
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques.
    Li J; Chen Q; Hu X; Yuan P; Cui L; Tu L; Cui J; Huang J; Jiang T; Ma X; Yao X; Zhou C; Lu H; Xu J
    Int J Med Inform; 2021 May; 149():104429. PubMed ID: 33647600
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Radiomic machine-learning classifiers for prognostic biomarkers of advanced nasopharyngeal carcinoma.
    Zhang B; He X; Ouyang F; Gu D; Dong Y; Zhang L; Mo X; Huang W; Tian J; Zhang S
    Cancer Lett; 2017 Sep; 403():21-27. PubMed ID: 28610955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 42.