These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 29637558)
21. Molecular Modeling Clarifies the Mechanism of Chromophore Maturation in the Green Fluorescent Protein. Grigorenko BL; Krylov AI; Nemukhin AV J Am Chem Soc; 2017 Aug; 139(30):10239-10249. PubMed ID: 28675933 [TBL] [Abstract][Full Text] [Related]
22. The crystal structure of the Y66L variant of green fluorescent protein supports a cyclization-oxidation-dehydration mechanism for chromophore maturation. Rosenow MA; Huffman HA; Phail ME; Wachter RM Biochemistry; 2004 Apr; 43(15):4464-72. PubMed ID: 15078092 [TBL] [Abstract][Full Text] [Related]
23. Ultrafast dynamics of protein proton transfer on short hydrogen bond potential energy surfaces: S65T/H148D GFP. Kondo M; Heisler IA; Stoner-Ma D; Tonge PJ; Meech SR J Am Chem Soc; 2010 Feb; 132(5):1452-3. PubMed ID: 19916498 [TBL] [Abstract][Full Text] [Related]
24. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study. Ma Y; Sun Q; Smith SC Phys Chem Chem Phys; 2017 May; 19(20):12942-12952. PubMed ID: 28480935 [TBL] [Abstract][Full Text] [Related]
25. Mutants of Discosoma red fluorescent protein with a GFP-like chromophore. Wiehler J; von Hummel J; Steipe B FEBS Lett; 2001 Jan; 487(3):384-9. PubMed ID: 11163363 [TBL] [Abstract][Full Text] [Related]
26. Engineering color variants of green fluorescent protein (GFP) for thermostability, pH-sensitivity, and improved folding kinetics. Aliye N; Fabbretti A; Lupidi G; Tsekoa T; Spurio R Appl Microbiol Biotechnol; 2015 Feb; 99(3):1205-16. PubMed ID: 25112226 [TBL] [Abstract][Full Text] [Related]
27. Structural basis of fluorescence fluctuation dynamics of green fluorescent proteins in acidic environments. Liu Y; Kim HR; Heikal AA J Phys Chem B; 2006 Nov; 110(47):24138-46. PubMed ID: 17125385 [TBL] [Abstract][Full Text] [Related]
28. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. Tubbs JL; Tainer JA; Getzoff ED Biochemistry; 2005 Jul; 44(29):9833-40. PubMed ID: 16026155 [TBL] [Abstract][Full Text] [Related]
29. Theoretical Computer-Aided Mutagenic Study on the Triple Green Fluorescent Protein Mutant S65T/H148D/Y145F. Armengol P; Gelabert R; Moreno M; Lluch JM Chemphyschem; 2015 Jul; 16(10):2134-9. PubMed ID: 25916771 [TBL] [Abstract][Full Text] [Related]
30. Structural Factors Enabling Successful GFP-Like Proteins with Alanine as the Third Chromophore-Forming Residue. Muslinkina L; Roldán-Salgado A; Gaytán P; Juárez-González VR; Rudiño E; Pletneva N; Pletnev V; Dauter Z; Pletnev S J Mol Biol; 2019 Mar; 431(7):1397-1408. PubMed ID: 30797856 [TBL] [Abstract][Full Text] [Related]
31. Oxidative chemistry in the GFP active site leads to covalent cross-linking of a modified leucine side chain with a histidine imidazole: implications for the mechanism of chromophore formation. Rosenow MA; Patel HN; Wachter RM Biochemistry; 2005 Jun; 44(23):8303-11. PubMed ID: 15938620 [TBL] [Abstract][Full Text] [Related]
32. Maturation efficiency, trypsin sensitivity, and optical properties of Arg96, Glu222, and Gly67 variants of green fluorescent protein. Sniegowski JA; Phail ME; Wachter RM Biochem Biophys Res Commun; 2005 Jul; 332(3):657-63. PubMed ID: 15894286 [TBL] [Abstract][Full Text] [Related]
33. Chromophore packing leads to hysteresis in GFP. Andrews BT; Roy M; Jennings PA J Mol Biol; 2009 Sep; 392(1):218-27. PubMed ID: 19577576 [TBL] [Abstract][Full Text] [Related]
34. Exploring chromophore--protein interactions in fluorescent protein cmFP512 from Cerianthus membranaceus: X-ray structure analysis and optical spectroscopy. Nienhaus K; Renzi F; Vallone B; Wiedenmann J; Nienhaus GU Biochemistry; 2006 Oct; 45(43):12942-53. PubMed ID: 17059211 [TBL] [Abstract][Full Text] [Related]
35. Kinetic study of de novo chromophore maturation of fluorescent proteins. Iizuka R; Yamagishi-Shirasaki M; Funatsu T Anal Biochem; 2011 Jul; 414(2):173-8. PubMed ID: 21459075 [TBL] [Abstract][Full Text] [Related]
36. GFP Loss-of-Function Mutations in Arabidopsis thaliana. Fu JL; Kanno T; Liang SC; Matzke AJ; Matzke M G3 (Bethesda); 2015 Jul; 5(9):1849-55. PubMed ID: 26153075 [TBL] [Abstract][Full Text] [Related]
37. Structural basis for the fast maturation of Arthropoda green fluorescent protein. Evdokimov AG; Pokross ME; Egorov NS; Zaraisky AG; Yampolsky IV; Merzlyak EM; Shkoporov AN; Sander I; Lukyanov KA; Chudakov DM EMBO Rep; 2006 Oct; 7(10):1006-12. PubMed ID: 16936637 [TBL] [Abstract][Full Text] [Related]
38. X-ray crystallographic studies on the hydrogen isotope effects of green fluorescent protein at sub-ångström resolutions. Tai Y; Takaba K; Hanazono Y; Dao HA; Miki K; Takeda K Acta Crystallogr D Struct Biol; 2019 Dec; 75(Pt 12):1096-1106. PubMed ID: 31793903 [TBL] [Abstract][Full Text] [Related]
39. Understanding GFP posttranslational chemistry: structures of designed variants that achieve backbone fragmentation, hydrolysis, and decarboxylation. Barondeau DP; Kassmann CJ; Tainer JA; Getzoff ED J Am Chem Soc; 2006 Apr; 128(14):4685-93. PubMed ID: 16594705 [TBL] [Abstract][Full Text] [Related]
40. Photophysics and dihedral freedom of the chromophore in yellow, blue, and green fluorescent protein. Megley CM; Dickson LA; Maddalo SL; Chandler GJ; Zimmer M J Phys Chem B; 2009 Jan; 113(1):302-8. PubMed ID: 19067572 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]