These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 29637737)
1. Fabrication and evaluation of a nerve guidance conduit capable of Ca Zargar Kharazi A; Dini G; Naser R J Biomed Mater Res A; 2018 Aug; 106(8):2181-2189. PubMed ID: 29637737 [TBL] [Abstract][Full Text] [Related]
2. Structural and mechanical characterization of bioresorbable, elastomeric nanocomposites from poly(glycerol sebacate)/nanohydroxyapatite for tissue transport applications. Rosenbalm TN; Teruel M; Day CS; Donati GL; Morykwas M; Argenta L; Kuthirummal N; Levi-Polyachenko N J Biomed Mater Res B Appl Biomater; 2016 Oct; 104(7):1366-73. PubMed ID: 26201533 [TBL] [Abstract][Full Text] [Related]
3. Elastomeric and mechanically stiff nanocomposites from poly(glycerol sebacate) and bioactive nanosilicates. Kerativitayanan P; Gaharwar AK Acta Biomater; 2015 Oct; 26():34-44. PubMed ID: 26297886 [TBL] [Abstract][Full Text] [Related]
5. Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Sundback CA; Shyu JY; Wang Y; Faquin WC; Langer RS; Vacanti JP; Hadlock TA Biomaterials; 2005 Sep; 26(27):5454-64. PubMed ID: 15860202 [TBL] [Abstract][Full Text] [Related]
6. The mechanical characteristics and in vitro biocompatibility of poly(glycerol sebacate)-bioglass elastomeric composites. Liang SL; Cook WD; Thouas GA; Chen QZ Biomaterials; 2010 Nov; 31(33):8516-29. PubMed ID: 20739061 [TBL] [Abstract][Full Text] [Related]
7. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
8. Poly (glycerol sebacate) elastomer supports bone regeneration by its mechanical properties being closer to osteoid tissue rather than to mature bone. Zaky SH; Lee KW; Gao J; Jensen A; Verdelis K; Wang Y; Almarza AJ; Sfeir C Acta Biomater; 2017 May; 54():95-106. PubMed ID: 28110067 [TBL] [Abstract][Full Text] [Related]
9. Characterization and optimization of glycerol/sebacate ratio in poly(glycerol-sebacate) elastomer for cell culture application. Guo XL; Lu XL; Dong DL; Sun ZJ J Biomed Mater Res A; 2014 Nov; 102(11):3903-7. PubMed ID: 24338974 [TBL] [Abstract][Full Text] [Related]
10. Bi-layered constructs of poly(glycerol-sebacate)-β-tricalcium phosphate for bone-soft tissue interface applications. Tevlek A; Hosseinian P; Ogutcu C; Turk M; Aydin HM Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():316-324. PubMed ID: 28024592 [TBL] [Abstract][Full Text] [Related]
11. Engineering Triphasic Nanocomposite Coatings on Pretreated Mg Substrates for Biomedical Applications. Chai X; Lin J; Xu C; Sun D; Liu HH ACS Appl Mater Interfaces; 2024 Oct; 16(40):54716-54730. PubMed ID: 39344064 [TBL] [Abstract][Full Text] [Related]
12. A poly(glycerol sebacate)-coated mesoporous bioactive glass scaffold with adjustable mechanical strength, degradation rate, controlled-release and cell behavior for bone tissue engineering. Lin D; Yang K; Tang W; Liu Y; Yuan Y; Liu C Colloids Surf B Biointerfaces; 2015 Jul; 131():1-11. PubMed ID: 25935647 [TBL] [Abstract][Full Text] [Related]
13. Preparation and properties investigation of biodegradable poly (glycerol sebacate-co-gelatin) containing nanoclay and graphene oxide for soft tissue engineering applications. Golbaten-Mofrad H; Salehi MH; Jafari SH; Goodarzi V; Entezari M; Hashemi M J Biomed Mater Res B Appl Biomater; 2022 Oct; 110(10):2241-2257. PubMed ID: 35467798 [TBL] [Abstract][Full Text] [Related]
14. Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. Chen QZ; Liang SL; Wang J; Simon GP J Mech Behav Biomed Mater; 2011 Nov; 4(8):1805-18. PubMed ID: 22098880 [TBL] [Abstract][Full Text] [Related]
16. Hybrid Aorta Constructs via In Situ Crosslinking of Poly(glycerol-sebacate) Elastomer Within a Decellularized Matrix. Guler S; Hosseinian P; Aydin HM Tissue Eng Part C Methods; 2017 Jan; 23(1):21-29. PubMed ID: 27875930 [TBL] [Abstract][Full Text] [Related]
17. Fabrication and characterization of carbon aerogel/poly(glycerol-sebacate) patches for cardiac tissue engineering. Atya AMN; Tevlek A; Almemar M; Gökcen D; Aydin HM Biomed Mater; 2021 Oct; 16(6):. PubMed ID: 34619670 [TBL] [Abstract][Full Text] [Related]
18. β-Tricalcium phosphate/poly(glycerol sebacate) scaffolds with robust mechanical property for bone tissue engineering. Yang K; Zhang J; Ma X; Ma Y; Kan C; Ma H; Li Y; Yuan Y; Liu C Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():37-47. PubMed ID: 26249563 [TBL] [Abstract][Full Text] [Related]
19. Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Chen QZ; Bismarck A; Hansen U; Junaid S; Tran MQ; Harding SE; Ali NN; Boccaccini AR Biomaterials; 2008 Jan; 29(1):47-57. PubMed ID: 17915309 [TBL] [Abstract][Full Text] [Related]
20. Injectable photocrosslinkable nanocomposite based on poly(glycerol sebacate) fumarate and hydroxyapatite: development, biocompatibility and bone regeneration in a rat calvarial bone defect model. Bodakhe S; Verma S; Garkhal K; Samal SK; Sharma SS; Kumar N Nanomedicine (Lond); 2013 Nov; 8(11):1777-95. PubMed ID: 23384697 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]