BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 29637761)

  • 1. Controllable Formation of Monodisperse Polymer Microbubbles as Ultrasound Contrast Agents.
    Song R; Peng C; Xu X; Wang J; Yu M; Hou Y; Zou R; Yao S
    ACS Appl Mater Interfaces; 2018 May; 10(17):14312-14320. PubMed ID: 29637761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Freeze-Dried Microfluidic Monodisperse Microbubbles as a New Generation of Ultrasound Contrast Agents.
    Soysal U; Azevedo PN; Bureau F; Aubry A; Carvalho MS; Pessoa ACSN; Torre LG; Couture O; Tourin A; Fink M; Tabeling P
    Ultrasound Med Biol; 2022 Aug; 48(8):1484-1495. PubMed ID: 35568594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the Echogenic Properties of Microfluidic Microbubbles Using Mixtures of Recombinant Protein and Amphiphilic Copolymers.
    Chen Z; Pulsipher KW; Chattaraj R; Hammer DA; Sehgal CM; Lee D
    Langmuir; 2019 Aug; 35(31):10079-10086. PubMed ID: 30768278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monodisperse versus Polydisperse Ultrasound Contrast Agents: In Vivo Sensitivity and safety in Rat and Pig.
    Helbert A; Gaud E; Segers T; Botteron C; Frinking P; Jeannot V
    Ultrasound Med Biol; 2020 Dec; 46(12):3339-3352. PubMed ID: 33008649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly Uniform Perfluoropropane-Loaded Cerasomal Microbubbles As a Novel Ultrasound Contrast Agent.
    Zhang C; Wang Z; Wang C; Li X; Liu J; Xu M; Xu S; Xie X; Jiang Q; Wang W; Cao Z
    ACS Appl Mater Interfaces; 2016 Jun; 8(24):15024-32. PubMed ID: 26114237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of shell type on the in vivo backscatter from polymer-encapsulated microbubbles.
    Forsberg F; Lathia JD; Merton DA; Liu JB; Le NT; Goldberg BB; Wheatley MA
    Ultrasound Med Biol; 2004 Oct; 30(10):1281-7. PubMed ID: 15582227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Shrinkage of Microfluidically Generated Microbubbles by Tuning Lipid Concentration.
    Zalloum IO; Paknahad AA; Kolios MC; Karshafian R; Tsai SSH
    Langmuir; 2022 Nov; 38(43):13021-13029. PubMed ID: 36260341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Theranostic Microbubbles Using Microfluidics for Ultrasound Imaging and Therapy: A Review.
    Pulsipher KW; Hammer DA; Lee D; Sehgal CM
    Ultrasound Med Biol; 2018 Dec; 44(12):2441-2460. PubMed ID: 30241729
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging.
    Hettiarachchi K; Talu E; Longo ML; Dayton PA; Lee AP
    Lab Chip; 2007 Apr; 7(4):463-8. PubMed ID: 17389962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Generation of Monodisperse Nanobubbles by Selective Gas Dissolution.
    Xu J; Salari A; Wang Y; He X; Kerr L; Darbandi A; de Leon AC; Exner AA; Kolios MC; Yuen D; Tsai SSH
    Small; 2021 May; 17(20):e2100345. PubMed ID: 33811441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Sensitivity of Ultrasound-Based Subharmonic Aided Pressure Estimation Using Monodisperse Microbubbles.
    van Hoeve W; de Vargas Serrano M; Te Winkel L; Forsberg F; Dave JK; Sarkar K; Wessner CE; Eisenbrey JR
    J Ultrasound Med; 2022 Jul; 41(7):1781-1789. PubMed ID: 34724241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Bubble Concentration on the in Vitro and in Vivo Performance of Highly Stable Lipid Shell-Stabilized Micro- and Nanoscale Ultrasound Contrast Agents.
    Abenojar EC; Nittayacharn P; de Leon AC; Perera R; Wang Y; Bederman I; Exner AA
    Langmuir; 2019 Aug; 35(31):10192-10202. PubMed ID: 30913884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Horizon: Microfluidic platform for the production of therapeutic microbubbles and nanobubbles.
    Abou-Saleh RH; Armistead FJ; Batchelor DVB; Johnson BRG; Peyman SA; Evans SD
    Rev Sci Instrum; 2021 Jul; 92(7):074105. PubMed ID: 34340422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acoustic characterization of monodisperse lipid-coated microbubbles: relationship between size and shell viscoelastic properties.
    Parrales MA; Fernandez JM; Perez-Saborid M; Kopechek JA; Porter TM
    J Acoust Soc Am; 2014 Sep; 136(3):1077. PubMed ID: 25190383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of polymeric microbubbles targeted to prostate-specific membrane antigen as prototype of novel ultrasound contrast agents.
    Sanna V; Pintus G; Bandiera P; Anedda R; Punzoni S; Sanna B; Migaleddu V; Uzzau S; Sechi M
    Mol Pharm; 2011 Jun; 8(3):748-57. PubMed ID: 21545176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy.
    Seo M; Gorelikov I; Williams R; Matsuura N
    Langmuir; 2010 Sep; 26(17):13855-60. PubMed ID: 20666507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multifunctional microbubbles and nanobubbles for photoacoustic and ultrasound imaging.
    Kim C; Qin R; Xu JS; Wang LV; Xu R
    J Biomed Opt; 2010; 15(1):010510. PubMed ID: 20210423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombinant protein-stabilized monodisperse microbubbles with tunable size using a valve-based microfluidic device.
    Angilè FE; Vargo KB; Sehgal CM; Hammer DA; Lee D
    Langmuir; 2014 Oct; 30(42):12610-8. PubMed ID: 25265041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scaleable production of microbubbles using an ultrasound-modulated microfluidic device.
    Carugo D; Browning RJ; Iranmanesh I; Messaoudi W; Rademeyer P; Stride E
    J Acoust Soc Am; 2021 Aug; 150(2):1577. PubMed ID: 34470259
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.