These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 29637803)

  • 1. Musculoskeletal multibody dynamics simulation of the contact mechanics and kinematics of a natural knee joint during a walking cycle.
    Hu J; Chen Z; Xin H; Zhang Q; Jin Z
    Proc Inst Mech Eng H; 2018 May; 232(5):508-519. PubMed ID: 29637803
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of menisci in knee contact mechanics and secondary kinematics during human walking.
    Hu J; Xin H; Chen Z; Zhang Q; Peng Y; Jin Z
    Clin Biomech (Bristol, Avon); 2019 Jan; 61():58-63. PubMed ID: 30481677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of Ligament Properties on Tibiofemoral Mechanics in Walking.
    Smith CR; Lenhart RL; Kaiser J; Vignos MF; Thelen DG
    J Knee Surg; 2016 Feb; 29(2):99-106. PubMed ID: 26408997
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dual-joint modeling for estimation of total knee replacement contact forces during locomotion.
    Hast MW; Piazza SJ
    J Biomech Eng; 2013 Feb; 135(2):021013. PubMed ID: 23445058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.
    Kia M; Stylianou AP; Guess TM
    Med Eng Phys; 2014 Mar; 36(3):335-44. PubMed ID: 24418154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.
    Jung Y; Phan CB; Koo S
    J Biomech Eng; 2016 Feb; 138(2):021016. PubMed ID: 26720762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM; Stylianou AP; Kia M
    J Biomech Eng; 2014 Feb; 136(2):021032. PubMed ID: 24389997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A subject specific multibody model of the knee with menisci.
    Guess TM; Thiagarajan G; Kia M; Mishra M
    Med Eng Phys; 2010 Jun; 32(5):505-15. PubMed ID: 20359933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
    Marra MA; Vanheule V; Fluit R; Koopman BH; Rasmussen J; Verdonschot N; Andersen MS
    J Biomech Eng; 2015 Feb; 137(2):020904. PubMed ID: 25429519
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait.
    Moissenet F; Chèze L; Dumas R
    J Biomech; 2014 Jan; 47(1):50-8. PubMed ID: 24210475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles.
    Li J; Lu Y; Miller SC; Jin Z; Hua X
    J Biomech; 2019 Sep; 94():230-234. PubMed ID: 31421809
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Co-simulation of neuromuscular dynamics and knee mechanics during human walking.
    Thelen DG; Won Choi K; Schmitz AM
    J Biomech Eng; 2014 Feb; 136(2):021033. PubMed ID: 24390129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of articular geometry features identified using statistical shape modelling on knee biomechanics.
    Clouthier AL; Smith CR; Vignos MF; Thelen DG; Deluzio KJ; Rainbow MJ
    Med Eng Phys; 2019 Apr; 66():47-55. PubMed ID: 30850334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y; Zhang Z; Gao Y; Chen Z; Xin H; Zhang Q; Fan X; Jin Z
    Med Eng Phys; 2018 Feb; 52():31-40. PubMed ID: 29269224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of in vivo joint mechanics of an artificial knee implant using rigid multi-body dynamics with elastic contacts.
    Chen Z; Zhang X; Ardestani MM; Wang L; Liu Y; Lian Q; He J; Li D; Jin Z
    Proc Inst Mech Eng H; 2014 Jun; 228(6):564-575. PubMed ID: 24878735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of elbow joint contact mechanics in the multibody framework.
    Rahman M; Cil A; Stylianou AP
    Med Eng Phys; 2016 Mar; 38(3):257-66. PubMed ID: 26832391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multibody dynamic simulation of knee contact mechanics.
    Bei Y; Fregly BJ
    Med Eng Phys; 2004 Nov; 26(9):777-89. PubMed ID: 15564115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.
    Smith CR; Vignos MF; Lenhart RL; Kaiser J; Thelen DG
    J Biomech Eng; 2016 Feb; 138(2):021017. PubMed ID: 26769446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle-ligament interactions at the knee during walking.
    Collins JJ; O'Connor JJ
    Proc Inst Mech Eng H; 1991; 205(1):11-8. PubMed ID: 1670070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.