These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 29637901)

  • 1. Research and development of 3D printed vasculature constructs.
    Li X; Liu L; Zhang X; Xu T
    Biofabrication; 2018 Apr; 10(3):032002. PubMed ID: 29637901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advances in tissue engineering of vasculature through three-dimensional bioprinting.
    Zhu J; Wang Y; Zhong L; Pan F; Wang J
    Dev Dyn; 2021 Dec; 250(12):1717-1738. PubMed ID: 34115420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Vascular Engineering Strategy Using 3D Printed Ice.
    Yeo GC
    Trends Biotechnol; 2019 May; 37(5):451-453. PubMed ID: 30773221
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a 3D cell printed construct considering angiogenesis for liver tissue engineering.
    Lee JW; Choi YJ; Yong WJ; Pati F; Shim JH; Kang KS; Kang IH; Park J; Cho DW
    Biofabrication; 2016 Jan; 8(1):015007. PubMed ID: 26756962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and characterization of gels with integrated channels using 3D printing with microfluidic nozzle for tissue engineering applications.
    Attalla R; Ling C; Selvaganapathy P
    Biomed Microdevices; 2016 Feb; 18(1):17. PubMed ID: 26842949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D-printed fluidic networks as vasculature for engineered tissue.
    Kinstlinger IS; Miller JS
    Lab Chip; 2016 May; 16(11):2025-43. PubMed ID: 27173478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization and preparation of bio-tubular scaffolds for fabricating artificial vascular grafts by combining electrospinning and a 3D printing system.
    Lee SJ; Heo DN; Park JS; Kwon SK; Lee JH; Lee JH; Kim WD; Kwon IK; Park SA
    Phys Chem Chem Phys; 2015 Feb; 17(5):2996-9. PubMed ID: 25557615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current progress in 3D printing for cardiovascular tissue engineering.
    Mosadegh B; Xiong G; Dunham S; Min JK
    Biomed Mater; 2015 Mar; 10(3):034002. PubMed ID: 25775166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Pericardium Hydrogels To Promote Wound Healing in Vascular Applications.
    Bracaglia LG; Messina M; Winston S; Kuo CY; Lerman M; Fisher JP
    Biomacromolecules; 2017 Nov; 18(11):3802-3811. PubMed ID: 28976740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.
    Wang M; Favi P; Cheng X; Golshan NH; Ziemer KS; Keidar M; Webster TJ
    Acta Biomater; 2016 Dec; 46():256-265. PubMed ID: 27667017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioprinting of artificial blood vessels: current approaches towards a demanding goal.
    Hoch E; Tovar GE; Borchers K
    Eur J Cardiothorac Surg; 2014 Nov; 46(5):767-78. PubMed ID: 24970571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of microvascular constructs using high resolution electrohydrodynamic inkjet printing.
    Zheng F; Derby B; Wong J
    Biofabrication; 2021 Apr; 13(3):. PubMed ID: 33285527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.
    Petrochenko PE; Torgersen J; Gruber P; Hicks LA; Zheng J; Kumar G; Narayan RJ; Goering PL; Liska R; Stampfl J; Ovsianikov A
    Adv Healthc Mater; 2015 Apr; 4(5):739-47. PubMed ID: 25522214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Cell Printing of Large-Volume Tissues: Application to Ear Regeneration.
    Lee JS; Kim BS; Seo D; Park JH; Cho DW
    Tissue Eng Part C Methods; 2017 Mar; 23(3):136-145. PubMed ID: 28093047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advancing the field of 3D biomaterial printing.
    Jakus AE; Rutz AL; Shah RN
    Biomed Mater; 2016 Jan; 11(1):014102. PubMed ID: 26752507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Traditional Invasive and Synchrotron-Based Noninvasive Assessments of Three-Dimensional-Printed Hybrid Cartilage Constructs In Situ.
    Olubamiji AD; Zhu N; Chang T; Nwankwo CK; Izadifar Z; Honaramooz A; Chen X; Eames BF
    Tissue Eng Part C Methods; 2017 Mar; 23(3):156-168. PubMed ID: 28106517
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A multilayered microfluidic blood vessel-like structure.
    Hasan A; Paul A; Memic A; Khademhosseini A
    Biomed Microdevices; 2015 Oct; 17(5):88. PubMed ID: 26256481
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair.
    Holmes B; Bulusu K; Plesniak M; Zhang LG
    Nanotechnology; 2016 Feb; 27(6):064001. PubMed ID: 26758780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepwise Cell Seeding on Tessellated Scaffolds to Study Sprouting Blood Vessels.
    Szklanny AA; Neale DB; Lahann J; Levenberg S
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33522507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.