These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 29637905)

  • 1. Realistic modeling of deep brain stimulation implants for electromagnetic MRI safety studies.
    Guerin B; Serano P; Iacono MI; Herrington TM; Widge AS; Dougherty DD; Bonmassar G; Angelone LM; Wald LL
    Phys Med Biol; 2018 May; 63(9):095015. PubMed ID: 29637905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The 'virtual DBS population': five realistic computational models of deep brain stimulation patients for electromagnetic MR safety studies.
    Guerin B; Iacono MI; Davids M; Dougherty D; Angelone LM; Wald LL
    Phys Med Biol; 2019 Feb; 64(3):035021. PubMed ID: 30625451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Simulations of Realistic Lead Trajectories and an Experimental Verification Support the Efficacy of Parallel Radiofrequency Transmission to Reduce Heating of Deep Brain Stimulation Implants during MRI.
    McElcheran CE; Golestanirad L; Iacono MI; Wei PS; Yang B; Anderson KJT; Bonmassar G; Graham SJ
    Sci Rep; 2019 Feb; 9(1):2124. PubMed ID: 30765724
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RF-induced heating in tissue near bilateral DBS implants during MRI at 1.5 T and 3T: The role of surgical lead management.
    Golestanirad L; Kirsch J; Bonmassar G; Downs S; Elahi B; Martin A; Iacono MI; Angelone LM; Keil B; Wald LL; Pilitsis J
    Neuroimage; 2019 Jan; 184():566-576. PubMed ID: 30243973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parallel transmission to reduce absorbed power around deep brain stimulation devices in MRI: Impact of number and arrangement of transmit channels.
    Guerin B; Angelone LM; Dougherty D; Wald LL
    Magn Reson Med; 2020 Jan; 83(1):299-311. PubMed ID: 31389069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feasibility of using linearly polarized rotating birdcage transmitters and close-fitting receive arrays in MRI to reduce SAR in the vicinity of deep brain simulation implants.
    Golestanirad L; Keil B; Angelone LM; Bonmassar G; Mareyam A; Wald LL
    Magn Reson Med; 2017 Apr; 77(4):1701-1712. PubMed ID: 27059266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of field strength on RF power deposition near conductive leads: A simulation study of SAR in DBS lead models during MRI at 1.5 T-10.5 T.
    Kazemivalipour E; Sadeghi-Tarakameh A; Keil B; Eryaman Y; Atalar E; Golestanirad L
    PLoS One; 2023; 18(1):e0280655. PubMed ID: 36701285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of simulation strategies on prediction of power deposition in the tissue around electronic implants during magnetic resonance imaging.
    Nguyen BT; Pilitsis J; Golestanirad L
    Phys Med Biol; 2020 Sep; 65(18):185007. PubMed ID: 32756027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Parallel Radiofrequency Transmission for the Reduction of Heating in Long Conductive Leads in 3 Tesla Magnetic Resonance Imaging.
    McElcheran CE; Yang B; Anderson KJ; Golenstani-Rad L; Graham SJ
    PLoS One; 2015; 10(8):e0134379. PubMed ID: 26237218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Local SAR near deep brain stimulation (DBS) electrodes at 64 and 127 MHz: A simulation study of the effect of extracranial loops.
    Golestanirad L; Angelone LM; Iacono MI; Katnani H; Wald LL; Bonmassar G
    Magn Reson Med; 2017 Oct; 78(4):1558-1565. PubMed ID: 27797157
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RF heating of deep brain stimulation implants during MRI in 1.2 T vertical scanners versus 1.5 T horizontal systems: A simulation study with realistic lead configurations.
    Kazemivalipour E; Vu J; Lin S; Bhusal B; Thanh Nguyen B; Kirsch J; Elahi B; Rosenow J; Atalar E; Golestanirad L
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():6143-6146. PubMed ID: 33019373
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comparative study of RF heating of deep brain stimulation devices in vertical vs. horizontal MRI systems.
    Vu J; Bhusal B; Nguyen BT; Sanpitak P; Nowac E; Pilitsis J; Rosenow J; Golestanirad L
    PLoS One; 2022; 17(12):e0278187. PubMed ID: 36490249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3-Tesla MRI of deep brain stimulation patients: safety assessment of coils and pulse sequences.
    Boutet A; Hancu I; Saha U; Crawley A; Xu DS; Ranjan M; Hlasny E; Chen R; Foltz W; Sammartino F; Coblentz A; Kucharczyk W; Lozano AM
    J Neurosurg; 2020 Feb; 132(2):586-594. PubMed ID: 30797197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel transmit pulse design for patients with deep brain stimulation implants.
    Eryaman Y; Guerin B; Akgun C; Herraiz JL; Martin A; Torrado-Carvajal A; Malpica N; Hernandez-Tamames JA; Schiavi E; Adalsteinsson E; Wald LL
    Magn Reson Med; 2015 May; 73(5):1896-903. PubMed ID: 24947104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of surgical modification of deep brain stimulation lead trajectories on radiofrequency heating during MRI at 3T: from phantom experiments to clinical implementation.
    Vu J; Bhusal B; Rosenow JM; Pilitsis J; Golestanirad L
    J Neurosurg; 2024 May; 140(5):1459-1470. PubMed ID: 37948679
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RF heating of deep brain stimulation implants in open-bore vertical MRI systems: A simulation study with realistic device configurations.
    Golestanirad L; Kazemivalipour E; Lampman D; Habara H; Atalar E; Rosenow J; Pilitsis J; Kirsch J
    Magn Reson Med; 2020 Jun; 83(6):2284-2292. PubMed ID: 31677308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Parallel radiofrequency transmission at 3 tesla to improve safety in bilateral implanted wires in a heterogeneous model.
    McElcheran CE; Yang B; Anderson KJT; Golestanirad L; Graham SJ
    Magn Reson Med; 2017 Dec; 78(6):2406-2415. PubMed ID: 28244142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3-Tesla MRI in patients with fully implanted deep brain stimulation devices: a preliminary study in 10 patients.
    Sammartino F; Krishna V; Sankar T; Fisico J; Kalia SK; Hodaie M; Kucharczyk W; Mikulis DJ; Crawley A; Lozano AM
    J Neurosurg; 2017 Oct; 127(4):892-898. PubMed ID: 28009238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A workflow for predicting radiofrequency-induced heating around bilateral deep brain stimulation electrodes in MRI.
    Zulkarnain NIH; Sadeghi-Tarakameh A; Thotland J; Harel N; Eryaman Y
    Med Phys; 2024 Feb; 51(2):1007-1018. PubMed ID: 38153187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reconfigurable MRI coil technology can substantially reduce RF heating of deep brain stimulation implants: First in-vitro study of RF heating reduction in bilateral DBS leads at 1.5 T.
    Golestanirad L; Kazemivalipour E; Keil B; Downs S; Kirsch J; Elahi B; Pilitsis J; Wald LL
    PLoS One; 2019; 14(8):e0220043. PubMed ID: 31390346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.