These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 29637905)

  • 21. Technical note: System uncertainty on four- and eight-channel parallel RF transmission for safe MRI of deep brain stimulation devices.
    Yang B; Chen CH; Graham SJ
    Med Phys; 2023 Sep; 50(9):5913-5919. PubMed ID: 37469178
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MRI-based multiscale model for electromagnetic analysis in the human head with implanted DBS.
    Iacono MI; Makris N; Mainardi L; Angelone LM; Bonmassar G
    Comput Math Methods Med; 2013; 2013():694171. PubMed ID: 23956789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Construction and modeling of a reconfigurable MRI coil for lowering SAR in patients with deep brain stimulation implants.
    Golestanirad L; Iacono MI; Keil B; Angelone LM; Bonmassar G; Fox MD; Herrington T; Adalsteinsson E; LaPierre C; Mareyam A; Wald LL
    Neuroimage; 2017 Feb; 147():577-588. PubMed ID: 28011252
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reconfigurable MRI technology for low-SAR imaging of deep brain stimulation at 3T: Application in bilateral leads, fully-implanted systems, and surgically modified lead trajectories.
    Kazemivalipour E; Keil B; Vali A; Rajan S; Elahi B; Atalar E; Wald LL; Rosenow J; Pilitsis J; Golestanirad L
    Neuroimage; 2019 Oct; 199():18-29. PubMed ID: 31096058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A workflow for predicting temperature increase at the electrical contacts of deep brain stimulation electrodes undergoing MRI.
    Sadeghi-Tarakameh A; Zulkarnain NIH; He X; Atalar E; Harel N; Eryaman Y
    Magn Reson Med; 2022 Nov; 88(5):2311-2325. PubMed ID: 35781696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A simple geometric analysis method for measuring and mitigating RF induced currents on Deep Brain Stimulation leads by multichannel transmission/reception.
    Eryaman Y; Kobayashi N; Moen S; Aman J; Grant A; Vaughan JT; Molnar G; Park MC; Vitek J; Adriany G; Ugurbil K; Harel N
    Neuroimage; 2019 Jan; 184():658-668. PubMed ID: 30273715
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of 3D C-Arm Fluoroscopy versus Diagnostic CT for Deep Brain Stimulation Stereotactic Registration and Post-Operative Lead Localization.
    Manfield J; Martin S; Green AL; FitzGerald JJ
    Stereotact Funct Neurosurg; 2024; 102(3):195-202. PubMed ID: 38537625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postoperative lead migration in deep brain stimulation surgery: Incidence, risk factors, and clinical impact.
    Morishita T; Hilliard JD; Okun MS; Neal D; Nestor KA; Peace D; Hozouri AA; Davidson MR; Bova FJ; Sporrer JM; Oyama G; Foote KD
    PLoS One; 2017; 12(9):e0183711. PubMed ID: 28902876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Patient's body composition can significantly affect RF power deposition in the tissue around DBS implants: ramifications for lead management strategies and MRI field-shaping techniques.
    Bhusal B; Keil B; Rosenow J; Kazemivalipour E; Golestanirad L
    Phys Med Biol; 2021 Jan; 66(1):015008. PubMed ID: 33238247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in the specific absorption rate (SAR) of radiofrequency energy in patients with retained cardiac leads during MRI at 1.5T and 3T.
    Golestanirad L; Rahsepar AA; Kirsch JE; Suwa K; Collins JC; Angelone LM; Keil B; Passman RS; Bonmassar G; Serano P; Krenz P; DeLap J; Carr JC; Wald LL
    Magn Reson Med; 2019 Jan; 81(1):653-669. PubMed ID: 29893997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wirelessly interfacing sensor-equipped implants and MR scanners for improved safety and imaging.
    Silemek B; Seifert F; Petzold J; Brühl R; Ittermann B; Winter L
    Magn Reson Med; 2023 Dec; 90(6):2608-2626. PubMed ID: 37533167
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of the role of lead resistivity in specific absorption rate for deep brain stimulator leads at 3T MRI.
    Angelone LM; Ahveninen J; Belliveau JW; Bonmassar G
    IEEE Trans Med Imaging; 2010 Apr; 29(4):1029-38. PubMed ID: 20335090
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Vertical open-bore MRI scanners generate significantly less radiofrequency heating around implanted leads: A study of deep brain stimulation implants in 1.2T OASIS scanners versus 1.5T horizontal systems.
    Kazemivalipour E; Bhusal B; Vu J; Lin S; Nguyen BT; Kirsch J; Nowac E; Pilitsis J; Rosenow J; Atalar E; Golestanirad L
    Magn Reson Med; 2021 Sep; 86(3):1560-1572. PubMed ID: 33961301
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of the RF heating of a generic deep brain stimulator exposed in 1.5 T magnetic resonance scanners.
    Cabot E; Lloyd T; Christ A; Kainz W; Douglas M; Stenzel G; Wedan S; Kuster N
    Bioelectromagnetics; 2013 Feb; 34(2):104-13. PubMed ID: 23060256
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variability in RF-induced heating of a deep brain stimulation implant across MR systems.
    Baker KB; Tkach JA; Phillips MD; Rezai AR
    J Magn Reson Imaging; 2006 Dec; 24(6):1236-42. PubMed ID: 17078088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. ESM-CT: a precise method for localization of DBS electrodes in CT images.
    Milchenko M; Snyder AZ; Campbell MC; Dowling JL; Rich KM; Brier LM; Perlmutter JS; Norris SA
    J Neurosci Methods; 2018 Oct; 308():366-376. PubMed ID: 30201271
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A numerical investigation on the effect of RF coil feed variability on global and local electromagnetic field exposure in human body models at 64 MHz.
    Lucano E; Liberti M; Lloyd T; Apollonio F; Wedan S; Kainz W; Angelone LM
    Magn Reson Med; 2018 Feb; 79(2):1135-1144. PubMed ID: 28421683
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implant-friendly MRI of deep brain stimulation electrodes at 7 T.
    Sadeghi-Tarakameh A; DelaBarre L; Zulkarnain NIH; Harel N; Eryaman Y
    Magn Reson Med; 2023 Dec; 90(6):2627-2642. PubMed ID: 37533196
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MRI-induced heating of selected thin wire metallic implants-- laboratory and computational studies-- findings and new questions raised.
    Bassen H; Kainz W; Mendoza G; Kellom T
    Minim Invasive Ther Allied Technol; 2006; 15(2):76-84. PubMed ID: 16754190
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subject- and resource-specific monitoring and proactive management of parallel radiofrequency transmission.
    Deniz CM; Alon L; Brown R; Zhu Y
    Magn Reson Med; 2016 Jul; 76(1):20-31. PubMed ID: 26198052
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.