BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 29638132)

  • 1. Transmembrane Polyproline Helix.
    Kubyshkin V; Grage SL; Bürck J; Ulrich AS; Budisa N
    J Phys Chem Lett; 2018 May; 9(9):2170-2174. PubMed ID: 29638132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring hydrophobicity limits of polyproline helix with oligomeric octahydroindole-2-carboxylic acid.
    Kubyshkin V; Budisa N
    J Pept Sci; 2018 Jun; 24(4-5):e3076. PubMed ID: 29582506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bilayer thickness determines the alignment of model polyproline helices in lipid membranes.
    Kubyshkin V; Grage SL; Ulrich AS; Budisa N
    Phys Chem Chem Phys; 2019 Oct; 21(40):22396-22408. PubMed ID: 31577299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a polyproline structure with hydrophobic exterior using octahydroindole-2-carboxylic acid.
    Kubyshkin V; Budisa N
    Org Biomol Chem; 2017 Jan; 15(3):619-627. PubMed ID: 27959372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic mismatch demonstrated for membranolytic peptides, and their use as molecular rulers to measure bilayer thickness in native cells.
    Grau-Campistany A; Strandberg E; Wadhwani P; Reichert J; Bürck J; Rabanal F; Ulrich AS
    Sci Rep; 2015 Mar; 5():9388. PubMed ID: 25807192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid bilayers: an essential environment for the understanding of membrane proteins.
    Page RC; Li C; Hu J; Gao FP; Cross TA
    Magn Reson Chem; 2007 Dec; 45 Suppl 1():S2-11. PubMed ID: 18095258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Oriented Circular Dichroism: A Method to Characterize Membrane-Active Peptides in Oriented Lipid Bilayers.
    Bürck J; Wadhwani P; Fanghänel S; Ulrich AS
    Acc Chem Res; 2016 Feb; 49(2):184-92. PubMed ID: 26756718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylglycerol bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2004 Mar; 43(12):3679-87. PubMed ID: 15035638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transmembrane helices of membrane proteins may flex to satisfy hydrophobic mismatch.
    Yeagle PL; Bennett M; Lemaître V; Watts A
    Biochim Biophys Acta; 2007 Mar; 1768(3):530-7. PubMed ID: 17223071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the design of supramolecular assemblies made of peptides and lipid bilayers.
    Kemayo Koumkoua P; Aisenbrey C; Salnikov E; Rifi O; Bechinger B
    J Pept Sci; 2014 Jul; 20(7):526-36. PubMed ID: 24909405
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes.
    Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN
    Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrophobic mismatch between helices and lipid bilayers.
    Weiss TM; van der Wel PC; Killian JA; Koeppe RE; Huang HW
    Biophys J; 2003 Jan; 84(1):379-85. PubMed ID: 12524291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the amino acid CF3-bicyclopentylglycine as a new label for solid-state 19 F-NMR structure analysis of membrane-bound peptides.
    Afonin S; Mikhailiuk PK; Komarov IV; Ulrich AS
    J Pept Sci; 2007 Sep; 13(9):614-23. PubMed ID: 17694569
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The determinants of hydrophobic mismatch response for transmembrane helices.
    de Jesus AJ; Allen TW
    Biochim Biophys Acta; 2013 Feb; 1828(2):851-63. PubMed ID: 22995244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analyzing the effects of hydrophobic mismatch on transmembrane α-helices using tryptophan fluorescence spectroscopy.
    Caputo GA
    Methods Mol Biol; 2013; 1063():95-116. PubMed ID: 23975773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic peptides as models for intrinsic membrane proteins.
    Killian JA
    FEBS Lett; 2003 Nov; 555(1):134-8. PubMed ID: 14630333
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of 4,4-disubstituted 2-aminocyclopentanecarboxylic acid derivatives and their incorporation into 12-helical beta-peptides.
    Peelen TJ; Chi Y; English EP; Gellman SH
    Org Lett; 2004 Nov; 6(24):4411-4. PubMed ID: 15548038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.