These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
95 related articles for article (PubMed ID: 29638290)
1. Phenomena of Nano- and Micro-Pore Formation on Ti-(10~50)Ta Alloys by Plasma Electrolytic Oxidation for Dental Implants. Kim JJ; Jeong YH; Choe HC J Nanosci Nanotechnol; 2017 Apr; 17(4):2285-290. PubMed ID: 29638290 [TBL] [Abstract][Full Text] [Related]
2. Highly Ordered Nanotube Formation on Beta Typed Ti- Kim SP; Choe HC J Nanosci Nanotechnol; 2020 Sep; 20(9):5791-5795. PubMed ID: 32331182 [TBL] [Abstract][Full Text] [Related]
3. Plasma Electrolytic Oxidation on Ti- Kim HJ; Choe HC J Nanosci Nanotechnol; 2021 Jul; 21(7):3753-3758. PubMed ID: 33715686 [TBL] [Abstract][Full Text] [Related]
4. Nanotube Morphology Changes of Ti- Cho HR; Choe HC J Nanosci Nanotechnol; 2021 Sep; 21(9):4807-4812. PubMed ID: 33691870 [TBL] [Abstract][Full Text] [Related]
5. Surface characteristics of HA coating and micro-pore formation on the Ti-25Nb-xHf alloys for dental materials. Kim SH; Jeong YH; Choe HC J Nanosci Nanotechnol; 2014 Oct; 14(10):7745-50. PubMed ID: 25942859 [TBL] [Abstract][Full Text] [Related]
6. Phenomena of nanotube nucleation and growth on new ternary titanium alloys. Choe HC; Jeong YH; Brantley WA J Nanosci Nanotechnol; 2010 Jul; 10(7):4684-9. PubMed ID: 21128479 [TBL] [Abstract][Full Text] [Related]
7. Nanotube nucleation phenomena on Ti-25Ta-xZr alloys for implants using ATO technique. Kim HJ; Jeong YH; Brantley WA; Choe HC J Nanosci Nanotechnol; 2014 Oct; 14(10):7569-73. PubMed ID: 25942827 [TBL] [Abstract][Full Text] [Related]
8. Nanotube Morphology Changes on the Ti- Kim HJ; Choe HC J Nanosci Nanotechnol; 2020 Sep; 20(9):5751-5754. PubMed ID: 32331173 [TBL] [Abstract][Full Text] [Related]
9. Wear resistance of experimental titanium alloys for dental applications. Faria AC; Rodrigues RC; Claro AP; da Gloria Chiarello de Mattos M; Ribeiro RF J Mech Behav Biomed Mater; 2011 Nov; 4(8):1873-9. PubMed ID: 22098886 [TBL] [Abstract][Full Text] [Related]
10. Sintering Analysis of Porous Ti/xTa Alloys Fabricated from Elemental Powders. Macias R; Garnica-Gonzalez P; Olmos L; Jimenez O; Chavez J; Vazquez O; Alvarado-Hernandez F; Arteaga D Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233884 [TBL] [Abstract][Full Text] [Related]
11. Crystallographic Structure Analysis of a Ti-Ta Thin Film Materials Library Fabricated by Combinatorial Magnetron Sputtering. Kadletz PM; Motemani Y; Iannotta J; Salomon S; Khare C; Grossmann L; Maier HJ; Ludwig A; Schmahl WW ACS Comb Sci; 2018 Mar; 20(3):137-150. PubMed ID: 29356502 [TBL] [Abstract][Full Text] [Related]
12. Microstructure and mechanical properties of Ti-Ta/alumina and Ti-Nb/alumina joints for dental implants. Gibbesch B; Elssner G; Petzow G Int J Oral Maxillofac Implants; 1989; 4(2):131-7. PubMed ID: 2689337 [TBL] [Abstract][Full Text] [Related]
13. Electrochemical oxide nanotube formation on the Ti-35Ta-xHf alloys for dental materials. Moon BH; Jeong YH; Choe HC J Nanosci Nanotechnol; 2011 Aug; 11(8):7428-32. PubMed ID: 22103212 [TBL] [Abstract][Full Text] [Related]
14. Nanotubular oxide surface and layer formed on the Ti-35Ta-xZr alloys for biomaterials. Kim EJ; Kim WG; Jeong YH; Choe HC J Nanosci Nanotechnol; 2011 Aug; 11(8):7433-7. PubMed ID: 22103213 [TBL] [Abstract][Full Text] [Related]
15. [Structural characteristics and biocompatibility of a new nano-Ta-Ti alloy rod fabricated by laser melting technique]. Zou L; Jiang J; Yang Y; Chen C; Qu D Nan Fang Yi Ke Da Xue Xue Bao; 2014 Jun; 34(6):852-6. PubMed ID: 24968844 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of Ti-Ta alloys with dual structure by incomplete diffusion between elemental powders. Liu Y; Li K; Wu H; Song M; Wang W; Li N; Tang H J Mech Behav Biomed Mater; 2015 Nov; 51():302-12. PubMed ID: 26275506 [TBL] [Abstract][Full Text] [Related]
17. Effect of Ti on the Structure and Mechanical Properties of Ti Zhang B; Tang Y; Li S; Ye Y; Zhu L; Zhang Z; Liu X; Wang Z; Bai S Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945938 [TBL] [Abstract][Full Text] [Related]
18. Effect of molybdenum on structure, microstructure and mechanical properties of biomedical Ti-20Zr-Mo alloys. Kuroda PAB; Buzalaf MAR; Grandini CR Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():511-515. PubMed ID: 27287149 [TBL] [Abstract][Full Text] [Related]
19. Microstructure and Oxidation Behavior of Fe-25Mn-9Al-8Ni-1C-xTi Alloy Prepared by Vacuum Arc Melting. Bai Y; Tian K; Li J; Yang Z Materials (Basel); 2021 Dec; 14(24):. PubMed ID: 34947316 [TBL] [Abstract][Full Text] [Related]
20. Biocompatibility of new low-cost (α + β)-type Ti-Mo-Fe alloys for long-term implantation. Abdelrhman Y; Gepreel MA; Kobayashi S; Okano S; Okamoto T Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():552-562. PubMed ID: 30889729 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]