BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2963939)

  • 1. Manual wheelchair propulsion: effects of power output on physiology and technique.
    van der Woude LH; Hendrich KM; Veeger HE; van Ingen Schenau GJ; Rozendal RH; de Groot G; Hollander AP
    Med Sci Sports Exerc; 1988 Feb; 20(1):70-8. PubMed ID: 2963939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantifying cardiorespiratory responses resulting from speed and slope increments during motorized treadmill propulsion among manual wheelchair users.
    Gauthier C; Grangeon M; Ananos L; Brosseau R; Gagnon DH
    Ann Phys Rehabil Med; 2017 Sep; 60(5):281-288. PubMed ID: 28410868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimum cycle frequencies in hand-rim wheelchair propulsion. Wheelchair propulsion technique.
    van der Woude LH; Veeger HE; Rozendal RH; Sargeant AJ
    Eur J Appl Physiol Occup Physiol; 1989; 58(6):625-32. PubMed ID: 2731532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wheelchair racing: effects of rim diameter and speed on physiology and technique.
    van der Woude LH; Veeger HE; Rozendal RH; van Ingen Schenau GJ; Rooth F; van Nierop P
    Med Sci Sports Exerc; 1988 Oct; 20(5):492-500. PubMed ID: 3193866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physical strain and mechanical efficiency in hubcrank and handrim wheelchair propulsion.
    van der Woude LH; van Kranen E; Ariëns G; Rozendal RH; Veeger HE
    J Med Eng Technol; 1995; 19(4):123-31. PubMed ID: 8544207
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propulsion technique and anaerobic work capacity in elite wheelchair athletes: cross-sectional analysis.
    van der Woude LH; Bakker WH; Elkhuizen JW; Veeger HE; Gwinn T
    Am J Phys Med Rehabil; 1998; 77(3):222-34. PubMed ID: 9635557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unmatched speed perceptions between overground and treadmill manual wheelchair propulsion in long-term manual wheelchair users.
    Chénier F; Champagne A; Desroches G; Gagnon DH
    Gait Posture; 2018 Mar; 61():398-402. PubMed ID: 29462773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of workload setting on propulsion technique in handrim wheelchair propulsion.
    van Drongelen S; Arnet U; Veeger DH; van der Woude LH
    Med Eng Phys; 2013 Mar; 35(3):283-8. PubMed ID: 22910103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of handrim velocity on mechanical efficiency in wheelchair propulsion.
    Veeger HE; van der Woude LH; Rozendal RH
    Med Sci Sports Exerc; 1992 Jan; 24(1):100-7. PubMed ID: 1548983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wheelchair propulsion efficiency: movement pattern adaptations to speed changes.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Med Sci Sports Exerc; 1994 Nov; 26(11):1373-81. PubMed ID: 7837958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Effect of External Power Output and Its Reliability on Propulsion Technique Variables in Wheelchair Users With Spinal Cord Injury.
    de Groot S; Cowan RE; MacGillivray MK; Leving MT; Sawatzky BJ
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():296-304. PubMed ID: 35089861
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wheelchair propulsion: functional ability dependent factors in wheelchair basketball players.
    Vanlandewijck YC; Spaepen AJ; Lysens RJ
    Scand J Rehabil Med; 1994 Mar; 26(1):37-48. PubMed ID: 8023084
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sex differences in wheelchair propulsion biomechanics and mechanical efficiency in novice young able-bodied adults.
    Chaikhot D; Taylor MJD; Hettinga FJ
    Eur J Sport Sci; 2018 Jun; 18(5):650-658. PubMed ID: 29533156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reliability and minimal detectable change of a new treadmill-based progressive workload incremental test to measure cardiorespiratory fitness in manual wheelchair users.
    Gauthier C; Arel J; Brosseau R; Hicks AL; Gagnon DH
    J Spinal Cord Med; 2017 Nov; 40(6):759-767. PubMed ID: 28903627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hand rim configuration: effects on physical strain and technique in unimpaired subjects?
    van der Woude LH; Formanoy M; de Groot S
    Med Eng Phys; 2003 Nov; 25(9):765-74. PubMed ID: 14519349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of wheelchair design on metabolic and heart rate responses during propulsion by persons with paraplegia.
    Hilbers PA; White TP
    Phys Ther; 1987 Sep; 67(9):1355-8. PubMed ID: 3628489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Propulsion technique in hand rim wheelchair ambulation.
    van der Woude LH; Veeger HE; Rozendal RH
    J Med Eng Technol; 1989; 13(1-2):136-41. PubMed ID: 2733007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differentiated perceived exertion and self-regulated wheelchair exercise.
    Paulson TA; Bishop NC; Eston RG; Goosey-Tolfrey VL
    Arch Phys Med Rehabil; 2013 Nov; 94(11):2269-76. PubMed ID: 23562415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanics and Physiology for Propelling Wheelchair Uphill Slope.
    Hashizume T; Kitagawa H; Lee H; Ueda H; Yoneda I; Booka M
    Stud Health Technol Inform; 2015; 217():447-54. PubMed ID: 26294512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical advantage in wheelchair lever propulsion: effect on physical strain and efficiency.
    van der Woude LH; Botden E; Vriend I; Veeger D
    J Rehabil Res Dev; 1997 Jul; 34(3):286-94. PubMed ID: 9239621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.