BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 2963939)

  • 21. Metabolic Cost and Mechanical Efficiency of a Novel Handle-Based Device for Wheelchair Propulsion.
    Puchinger M; Kurup N; Gstaltner K; Pandy MG; Gföhler M
    J Rehabil Med; 2022 Nov; 54():jrm00346. PubMed ID: 36264132
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of wheelchair mass, tire type and tire pressure on physical strain and wheelchair propulsion technique.
    de Groot S; Vegter RJ; van der Woude LH
    Med Eng Phys; 2013 Oct; 35(10):1476-82. PubMed ID: 23642660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Consequences of a cross slope on wheelchair handrim biomechanics.
    Richter WM; Rodriguez R; Woods KR; Axelson PW
    Arch Phys Med Rehabil; 2007 Jan; 88(1):76-80. PubMed ID: 17207679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions.
    de Klerk R; Velhorst V; Veeger DHEJ; van der Woude LHV; Vegter RJK
    J Neuroeng Rehabil; 2020 Oct; 17(1):136. PubMed ID: 33069257
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of push frequency and strategy variations on economy and perceived exertion during wheelchair propulsion.
    Goosey-Tolfrey VL; Kirk JH
    Eur J Appl Physiol; 2003 Sep; 90(1-2):154-8. PubMed ID: 14504947
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early motor learning changes in upper-limb dynamics and shoulder complex loading during handrim wheelchair propulsion.
    Vegter RJ; Hartog J; de Groot S; Lamoth CJ; Bekker MJ; van der Scheer JW; van der Woude LH; Veeger DH
    J Neuroeng Rehabil; 2015 Mar; 12():26. PubMed ID: 25889389
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanical efficiency during hand-rim wheelchair propulsion: effects of base-line subtraction and power output.
    Hintzy F; Tordi N
    Clin Biomech (Bristol, Avon); 2004 May; 19(4):343-9. PubMed ID: 15109753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerometer output and its association with energy expenditure during manual wheelchair propulsion.
    Learmonth YC; Kinnett-Hopkins D; Rice IM; Dysterheft JL; Motl RW
    Spinal Cord; 2016 Feb; 54(2):110-4. PubMed ID: 25777327
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Push-Rate Threshold for Physical Activity Intensity in Persons Who Use Manual Wheelchairs.
    Rice IM; Jeng B; Silveira SL; Motl RW
    Am J Phys Med Rehabil; 2021 Mar; 100(3):292-296. PubMed ID: 33048893
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of steering on the physiological energy cost of wheelchair propulsion.
    Reid M; Lawrie AT; Hunter J; Warren PM
    Scand J Rehabil Med; 1990; 22(3):139-43. PubMed ID: 2244191
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wheelchair users' perceived exertion during typical mobility activities.
    Qi L; Ferguson-Pell M; Salimi Z; Haennel R; Ramadi A
    Spinal Cord; 2015 Sep; 53(9):687-91. PubMed ID: 25777329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Selected comparisons between experienced and non-experienced individuals during manual wheelchair propulsion.
    Patterson P; Draper S
    Biomed Sci Instrum; 1997; 33():477-81. PubMed ID: 9731406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pushrim biomechanical changes with progressive increases in slope during motorized treadmill manual wheelchair propulsion in individuals with spinal cord injury.
    Gagnon DH; Babineau AC; Champagne A; Desroches G; Aissaoui R
    J Rehabil Res Dev; 2014; 51(5):789-802. PubMed ID: 25357244
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hand-rim forces and gross mechanical efficiency in asynchronous and synchronous wheelchair propulsion: a comparison.
    Lenton JP; van der Woude L; Fowler N; Nicholson G; Tolfrey K; Goosey-Tolfrey V
    Int J Sports Med; 2014 Mar; 35(3):223-31. PubMed ID: 23945971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of push frequency on the economy of wheelchair racers.
    Goosey VL; Campbell IG; Fowler NE
    Med Sci Sports Exerc; 2000 Jan; 32(1):174-81. PubMed ID: 10647546
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Workload of horses on a water treadmill: effect of speed and water height on oxygen consumption and cardiorespiratory parameters.
    Greco-Otto P; Bond S; Sides R; Kwong GPS; Bayly W; Léguillette R
    BMC Vet Res; 2017 Nov; 13(1):360. PubMed ID: 29179766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological evaluation of a newly designed lever mechanism for wheelchairs.
    van der Woude LH; Veeger HE; de Boer Y; Rozendal RH
    J Med Eng Technol; 1993; 17(6):232-40. PubMed ID: 8169940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanical efficiency and propulsion technique after 7 weeks of low-intensity wheelchair training.
    de Groot S; de Bruin M; Noomen SP; van der Woude LH
    Clin Biomech (Bristol, Avon); 2008 May; 23(4):434-41. PubMed ID: 18077065
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of Cardiorespiratory Demand and Rate of Perceived Exertion During Propulsion in a Natural Environment With and Without the Use of a Mobility Assistance Dog in Manual Wheelchair Users.
    Champagne A; Gagnon DH; Vincent C
    Am J Phys Med Rehabil; 2016 Sep; 95(9):685-91. PubMed ID: 26945223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A new procedure to determine external power output during handrim wheelchair propulsion on a roller ergometer: a reliability study.
    Theisen D; Francaux M; Fayt A; Sturbois X
    Int J Sports Med; 1996 Nov; 17(8):564-71. PubMed ID: 8973976
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.