These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 29641379)

  • 1. Contact Pressure and Flexibility of Multipin Dry EEG Electrodes.
    Fiedler P; Muhle R; Griebel S; Pedrosa P; Fonseca C; Vaz F; Zanow F; Haueisen J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):750-757. PubMed ID: 29641379
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel Multipin Electrode Cap System for Dry Electroencephalography.
    Fiedler P; Pedrosa P; Griebel S; Fonseca C; Vaz F; Supriyanto E; Zanow F; Haueisen J
    Brain Topogr; 2015 Sep; 28(5):647-656. PubMed ID: 25998854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-density 256-channel cap for dry electroencephalography.
    Fiedler P; Fonseca C; Supriyanto E; Zanow F; Haueisen J
    Hum Brain Mapp; 2022 Mar; 43(4):1295-1308. PubMed ID: 34796574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular multipin electrodes for comfortable dry EEG.
    Fiedler P; Strohmeier D; Hunold A; Griebel S; Muhle R; Schreiber M; Pedrosa P; Vasconcelos B; Fonseca C; Vaz F; Haueisen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5705-5708. PubMed ID: 28269550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel flexible Dry multipin electrodes for EEG: Signal quality and interfacial impedance of Ti and TiN coatings.
    Fiedler P; Fonseca C; Pedrosa P; Martins A; Vaz F; Griebel S; Haueisen J
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():547-50. PubMed ID: 24109745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Center Evaluation of Gel-Based and Dry Multipin EEG Caps.
    Ng CR; Fiedler P; Kuhlmann L; Liley D; Vasconcelos B; Fonseca C; Tamburro G; Comani S; Lui TK; Tse CY; Warsito IF; Supriyanto E; Haueisen J
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flower electrodes for comfortable dry electroencephalography.
    Warsito IF; Komosar M; Bernhard MA; Fiedler P; Haueisen J
    Sci Rep; 2023 Oct; 13(1):16589. PubMed ID: 37789022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Arch Electrode: A Novel Dry Electrode Concept for Improved Wearing Comfort.
    Vasconcelos B; Fiedler P; Machts R; Haueisen J; Fonseca C
    Front Neurosci; 2021; 15():748100. PubMed ID: 34733134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, fabrication and experimental validation of a novel dry-contact sensor for measuring electroencephalography signals without skin preparation.
    Liao LD; Wang IJ; Chen SF; Chang JY; Lin CT
    Sensors (Basel); 2011; 11(6):5819-34. PubMed ID: 22163929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel dry polymer foam electrodes for long-term EEG measurement.
    Lin CT; Liao LD; Liu YH; Wang IJ; Lin BS; Chang JY
    IEEE Trans Biomed Eng; 2011 May; 58(5):1200-7. PubMed ID: 21193371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards emerging EEG applications: a novel printable flexible Ag/AgCl dry electrode array for robust recording of EEG signals at forehead sites.
    Li G; Wu J; Xia Y; Wu Y; Tian Y; Liu J; Chen D; He Q
    J Neural Eng; 2020 Mar; 17(2):026001. PubMed ID: 32000145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel hydrogel-based preparation-free EEG electrode.
    Alba NA; Sclabassi RJ; Sun M; Cui XT
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):415-23. PubMed ID: 20423811
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Active Electrodes for Wearable EEG Acquisition: Review and Electronics Design Methodology.
    Xu J; Mitra S; Van Hoof C; Yazicioglu RF; Makinwa KAA
    IEEE Rev Biomed Eng; 2017; 10():187-198. PubMed ID: 28113349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-service characterization of a polymer wick-based quasi-dry electrode for rapid pasteless electroencephalography.
    Pedrosa P; Fiedler P; Pestana V; Vasconcelos B; Gaspar H; Amaral MH; Freitas D; Haueisen J; Nóbrega JM; Fonseca C
    Biomed Tech (Berl); 2018 Jul; 63(4):349-359. PubMed ID: 28467306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Bristle-Shaped Semi-Dry Electrode With Low Contact Impedance and Ease of Use Features for EEG Signal Measurements.
    Gao KP; Yang HJ; Liao LL; Jiang CP; Zhao N; Wang XL; Li XY; Chen X; Yang B; Liu J
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):750-761. PubMed ID: 31170063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Miniaturized electroencephalographic scalp electrode for optimal wearing comfort.
    Nikulin VV; Kegeles J; Curio G
    Clin Neurophysiol; 2010 Jul; 121(7):1007-14. PubMed ID: 20227914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dry-Contact Electrode Ear-EEG.
    Kappel SL; Rank ML; Toft HO; Andersen M; Kidmose P
    IEEE Trans Biomed Eng; 2019 Jan; 66(1):150-158. PubMed ID: 29993415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing a novel polymer-wick based electrode for EEG neurophysiological research.
    Pasion R; Paiva TO; Pedrosa P; Gaspar H; Vasconcelos B; Martins AC; Amaral MH; Nóbrega JM; Páscoa R; Fonseca C; Barbosa F
    J Neurosci Methods; 2016 Jul; 267():126-31. PubMed ID: 27091368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comb-shaped polymer-based Dry electrodes for EEG/ECG measurements with high user comfort.
    Chen YH; Op de Beeck M; Vanderheyden L; Mihajlovic V; Grundlehner B; Van Hoof C
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():551-4. PubMed ID: 24109746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wireless instrumentation system based on dry electrodes for acquiring EEG signals.
    Dias NS; Carmo JP; Mendes PM; Correia JH
    Med Eng Phys; 2012 Sep; 34(7):972-81. PubMed ID: 22153322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.