BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29641458)

  • 1. Epigallocatechin Gallate-Modified Gelatin Sponges Treated by Vacuum Heating as a Novel Scaffold for Bone Tissue Engineering.
    Honda Y; Takeda Y; Li P; Huang A; Sasayama S; Hara E; Uemura N; Ueda M; Hashimoto M; Arita K; Matsumoto N; Hashimoto Y; Baba S; Tanaka T
    Molecules; 2018 Apr; 23(4):. PubMed ID: 29641458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integration of Epigallocatechin Gallate in Gelatin Sponges Attenuates Matrix Metalloproteinase-Dependent Degradation and Increases Bone Formation.
    Huang A; Honda Y; Li P; Tanaka T; Baba S
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31801223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteogenesis of Multipotent Progenitor Cells using the Epigallocatechin Gallate-Modified Gelatin Sponge Scaffold in the Rat Congenital Cleft-Jaw Model.
    Sasayama S; Hara T; Tanaka T; Honda Y; Baba S
    Int J Mol Sci; 2018 Nov; 19(12):. PubMed ID: 30501071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigallocatechin Gallate-Modified Gelatins with Different Compositions Alter the Quality of Regenerated Bones.
    Hara E; Honda Y; Suzuki O; Tanaka T; Matsumoto N
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30347668
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Augmentation of Bone Regeneration by Depletion of Stress-Induced Senescent Cells Using Catechin and Senolytics.
    Honda Y; Huang A; Tanaka T; Han X; Gao B; Liu H; Wang X; Zhao J; Hashimoto Y; Yamamoto K; Matsumoto N; Baba S; Umeda M
    Int J Mol Sci; 2020 Jun; 21(12):. PubMed ID: 32545756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nature-derived epigallocatechin gallate/duck's feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration.
    Kook YJ; Tian J; Jeon YS; Choi MJ; Song JE; Park CH; Reis RL; Khang G
    J Biomater Sci Polym Ed; 2018; 29(7-9):984-996. PubMed ID: 29207926
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Zn
    Jing H; Wu Y; Lin Y; Luo T; Liu H; Luo Z
    Colloids Surf B Biointerfaces; 2024 Jul; 239():113971. PubMed ID: 38759296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local Controlled Release of Polyphenol Conjugated with Gelatin Facilitates Bone Formation.
    Honda Y; Tanaka T; Tokuda T; Kashiwagi T; Kaida K; Hieda A; Umezaki Y; Hashimoto Y; Imai K; Matsumoto N; Baba S; Shimizutani K
    Int J Mol Sci; 2015 Jun; 16(6):14143-57. PubMed ID: 26110386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of rat critical size calvarial defect using osteoblast-like and umbilical vein endothelial cells seeded in gelatin/hydroxyapatite scaffolds.
    Johari B; Ahmadzadehzarajabad M; Azami M; Kazemi M; Soleimani M; Kargozar S; Hajighasemlou S; Farajollahi MM; Samadikuchaksaraei A
    J Biomed Mater Res A; 2016 Jul; 104(7):1770-8. PubMed ID: 26990815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes and concerns on osteoblasts.
    Chu C; Deng J; Xiang L; Wu Y; Wei X; Qu Y; Man Y
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():386-394. PubMed ID: 27287135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virus immobilization on biomaterial scaffolds through biotin-avidin interaction for improving bone regeneration.
    Hu WW; Wang Z; Krebsbach PH
    J Tissue Eng Regen Med; 2016 Feb; 10(2):E63-72. PubMed ID: 23798490
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of BMP-2-releasing gelatin/β-TCP sponges with autologous bone marrow for bone regeneration of X-ray-irradiated rabbit ulnar defects.
    Yamamoto M; Hokugo A; Takahashi Y; Nakano T; Hiraoka M; Tabata Y
    Biomaterials; 2015 Jul; 56():18-25. PubMed ID: 25934275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Utility of Thermal Cross-Linking in Stabilizing Hydrogels with Beta-Tricalcium Phosphate and/or Epigallocatechin Gallate for Use in Bone Regeneration Therapy.
    Gao B; Honda Y; Yamada Y; Tanaka T; Takeda Y; Nambu T; Baba S
    Polymers (Basel); 2021 Dec; 14(1):. PubMed ID: 35012062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of epigallocatechin-3-gallate (EGCG) modified collagen in guided bone regeneration (GBR) surgery and modulation of macrophage phenotype.
    Chu C; Wang Y; Wang Y; Yang R; Liu L; Rung S; Xiang L; Wu Y; Du S; Man Y; Qu Y
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():73-82. PubMed ID: 30889747
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implantation of green tea catechin α-tricalcium phosphate combination enhances bone repair in rat skull defects.
    Rodriguez R; Kondo H; Nyan M; Hao J; Miyahara T; Ohya K; Kasugai S
    J Biomed Mater Res B Appl Biomater; 2011 Aug; 98(2):263-71. PubMed ID: 21591251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone healing evaluation of nanofibrous composite scaffolds in rat calvarial defects: a comparative study.
    Jaiswal AK; Dhumal RV; Ghosh S; Chaudhari P; Nemani H; Soni VP; Vanage GR; Bellare JR
    J Biomed Nanotechnol; 2013 Dec; 9(12):2073-85. PubMed ID: 24266262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of laminated hydroxyapatite/gelatin nanocomposite scaffold structure on osteogenesis using unrestricted somatic stem cells in rat.
    Tavakol S; Azami M; Khoshzaban A; Ragerdi Kashani I; Tavakol B; Hoveizi E; Rezayat Sorkhabadi SM
    Cell Biol Int; 2013 Nov; 37(11):1181-9. PubMed ID: 23765607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro characterization of MG-63 osteoblast-like cells cultured on organic-inorganic lyophilized gelatin sponges for early bone healing.
    Rodriguez IA; Saxena G; Hixon KR; Sell SA; Bowlin GL
    J Biomed Mater Res A; 2016 Aug; 104(8):2011-9. PubMed ID: 27038217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of nanohydroxyapaptite (nano-HA) coated epigallocatechin-3-gallate (EGCG) cross-linked collagen membranes.
    Chu C; Deng J; Man Y; Qu Y
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():258-264. PubMed ID: 28575983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of the biodegradation rate controlled by pore structures in magnesium phosphate ceramic scaffolds on bone tissue regeneration in vivo.
    Kim JA; Lim J; Naren R; Yun HS; Park EK
    Acta Biomater; 2016 Oct; 44():155-67. PubMed ID: 27554019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.