These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 29641458)

  • 21. The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects.
    Liu Z; Yuan X; Fernandes G; Dziak R; Ionita CN; Li C; Wang C; Yang S
    Stem Cell Res Ther; 2017 May; 8(1):122. PubMed ID: 28545565
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of fibrinogen concentration on fibrin glue and bone powder scaffolds in bone regeneration.
    Kim BS; Sung HM; You HK; Lee J
    J Biosci Bioeng; 2014 Oct; 118(4):469-75. PubMed ID: 24768229
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Osteoblast-seeded bioglass/gelatin nanocomposite: a promising bone substitute in critical-size calvarial defect repair in rat.
    Johari B; Kadivar M; Lak S; Gholipourmalekabadi M; Urbanska AM; Mozafari M; Ahmadzadehzarajabad M; Azarnezhad A; Afshari S; Zargan J; Kargozar S
    Int J Artif Organs; 2016 Nov; 39(10):524-533. PubMed ID: 27901555
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative study on the role of gelatin, chitosan and their combination as tissue engineered scaffolds on healing and regeneration of critical sized bone defects: an in vivo study.
    Oryan A; Alidadi S; Bigham-Sadegh A; Moshiri A
    J Mater Sci Mater Med; 2016 Oct; 27(10):155. PubMed ID: 27590825
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nanoparticle biphasic calcium phosphate loading on gelatin-pectin scaffold for improved bone regeneration.
    Nguyen TB; Min YK; Lee BT
    Tissue Eng Part A; 2015 Apr; 21(7-8):1376-87. PubMed ID: 25602709
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and in vivo evaluation of an osteoblast-conditioned nano-hydroxyapatite/gelatin composite scaffold for bone tissue regeneration.
    Samadikuchaksaraei A; Gholipourmalekabadi M; Erfani Ezadyar E; Azami M; Mozafari M; Johari B; Kargozar S; Jameie SB; Korourian A; Seifalian AM
    J Biomed Mater Res A; 2016 Aug; 104(8):2001-10. PubMed ID: 27027855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative Epigallocatechin Gallate Coating on Polymeric Substrates for Bone Tissue Regeneration.
    Madhurakkat Perikamana SK; Lee SM; Lee J; Ahmad T; Lee MS; Yang HS; Shin H
    Macromol Biosci; 2019 Apr; 19(4):e1800392. PubMed ID: 30645050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro and in vivo evaluation of MgF
    Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y
    Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bone formation of a porous Gelatin-Pectin-biphasic calcium phosphate composite in presence of BMP-2 and VEGF.
    Amirian J; Linh NT; Min YK; Lee BT
    Int J Biol Macromol; 2015 May; 76():10-24. PubMed ID: 25709009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assessment of multicomponent hydrogel scaffolds of poly(acrylic acid-2-hydroxy ethyl methacrylate)/gelatin for tissue engineering applications.
    Jaiswal M; Koul V
    J Biomater Appl; 2013 Mar; 27(7):848-61. PubMed ID: 22207603
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of EGCG on the mechanical, bioactivities, cross-linking and release properties of gelatin film.
    Wang Q; Cao J; Yu H; Zhang J; Yuan Y; Shen X; Li C
    Food Chem; 2019 Jan; 271():204-210. PubMed ID: 30236668
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering.
    Sharma C; Dinda AK; Potdar PD; Chou CF; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():416-427. PubMed ID: 27127072
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rat bone marrow stromal cells-seeded porous gelatin/tricalcium phosphate/oligomeric proanthocyanidins composite scaffold for bone repair.
    Chen KY; Chung CM; Chen YS; Bau DT; Yao CH
    J Tissue Eng Regen Med; 2013 Sep; 7(9):708-19. PubMed ID: 22392838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control Release of Adenosine Potentiate Osteogenic Differentiation within a Bone Integrative EGCG-
    Verma NK; Kar AK; Singh A; Jagdale P; Satija NK; Ghosh D; Patnaik S
    Biomacromolecules; 2021 Jul; 22(7):3069-3083. PubMed ID: 34152738
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Angiogenesis involvement by octacalcium phosphate-gelatin composite-driven bone regeneration in rat calvaria critical-sized defect.
    Kurobane T; Shiwaku Y; Anada T; Hamai R; Tsuchiya K; Baba K; Iikubo M; Takahashi T; Suzuki O
    Acta Biomater; 2019 Apr; 88():514-526. PubMed ID: 30776505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects.
    Handa T; Anada T; Honda Y; Yamazaki H; Kobayashi K; Kanda N; Kamakura S; Echigo S; Suzuki O
    Acta Biomater; 2012 Mar; 8(3):1190-200. PubMed ID: 22198138
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collagen-gelatin-genipin-hydroxyapatite composite scaffolds colonized by human primary osteoblasts are suitable for bone tissue engineering applications: in vitro evidences.
    Vozzi G; Corallo C; Carta S; Fortina M; Gattazzo F; Galletti M; Giordano N
    J Biomed Mater Res A; 2014 May; 102(5):1415-21. PubMed ID: 23775901
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis.
    Shankar KG; Gostynska N; Montesi M; Panseri S; Sprio S; Kon E; Marcacci M; Tampieri A; Sandri M
    Int J Biol Macromol; 2017 Feb; 95():1199-1209. PubMed ID: 27836656
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.
    Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH
    J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Epigallocatechin Gallate, an Antibacterial Cross-linking Agent, on Proliferation and Differentiation of Human Dental Pulp Cells Cultured in Collagen Scaffolds.
    Kwon YS; Kim HJ; Hwang YC; Rosa V; Yu MK; Min KS
    J Endod; 2017 Feb; 43(2):289-296. PubMed ID: 28132713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.