These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
306 related articles for article (PubMed ID: 29641582)
1. Validity of consumer-grade activity monitor to identify manual wheelchair propulsion in standardized activities of daily living. Leving MT; Horemans HLD; Vegter RJK; de Groot S; Bussmann JBJ; van der Woude LHV PLoS One; 2018; 13(4):e0194864. PubMed ID: 29641582 [TBL] [Abstract][Full Text] [Related]
2. The Preliminary Criterion Validity of the Activ8 Activity Monitor to Measure Physical Activity in Youth Using a Wheelchair. Lankhorst K; Sol M; van den Berg-Emons R; Horemans H; de Groot J Pediatr Phys Ther; 2021 Oct; 33(4):268-273. PubMed ID: 34417429 [TBL] [Abstract][Full Text] [Related]
3. Validity of activity monitors in wheelchair users: A systematic review. Tsang K; Hiremath SV; Crytzer TM; Dicianno BE; Ding D J Rehabil Res Dev; 2016; 53(6):641-658. PubMed ID: 27997674 [TBL] [Abstract][Full Text] [Related]
4. Feasibility and Validity of Wearable Sensors for Monitoring Temporal Parameters in Manual Wheelchair Propulsion. Fathian R; Khandan A; Rahmanifar N; Ho C; Rouhani H IEEE J Biomed Health Inform; 2024 Sep; 28(9):5239-5246. PubMed ID: 38814765 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of activity monitors to estimate energy expenditure in manual wheelchair users. Hiremath SV; Ding D Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():835-8. PubMed ID: 19964247 [TBL] [Abstract][Full Text] [Related]
6. Physical activity classification utilizing SenseWear activity monitor in manual wheelchair users with spinal cord injury. Hiremath SV; Ding D; Farringdon J; Vyas N; Cooper RA Spinal Cord; 2013 Sep; 51(9):705-9. PubMed ID: 23689386 [TBL] [Abstract][Full Text] [Related]
7. Validity of the detection of wheelchair propulsion as measured with an Activity Monitor in patients with spinal cord injury. Postma K; van den Berg-Emons HJ; Bussmann JB; Sluis TA; Bergen MP; Stam HJ Spinal Cord; 2005 Sep; 43(9):550-7. PubMed ID: 15838526 [TBL] [Abstract][Full Text] [Related]
8. Promoting Physical Activity Through a Manual Wheelchair Propulsion Intervention in Persons With Multiple Sclerosis. Rice IM; Rice LA; Motl RW Arch Phys Med Rehabil; 2015 Oct; 96(10):1850-8. PubMed ID: 26150167 [TBL] [Abstract][Full Text] [Related]
9. Valid detection of self-propelled wheelchair driving with two accelerometers. Kooijmans H; Horemans HL; Stam HJ; Bussmann JB Physiol Meas; 2014 Nov; 35(11):2297-306. PubMed ID: 25340938 [TBL] [Abstract][Full Text] [Related]
10. Predicting energy expenditure through hand rim propulsion power output in individuals who use wheelchairs. Conger SA; Scott SN; Bassett DR Br J Sports Med; 2014 Jul; 48(13):1048-53. PubMed ID: 24825852 [TBL] [Abstract][Full Text] [Related]
11. Characterization of wheelchair maneuvers based on noisy inertial sensor data: a preliminary study. Fu J; Liu T; Jones M; Qian G; Jan YK Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():1731-4. PubMed ID: 25570310 [TBL] [Abstract][Full Text] [Related]
12. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System. Hiremath SV; Intille SS; Kelleher A; Cooper RA; Ding D Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800 [TBL] [Abstract][Full Text] [Related]
13. User assessment of manual wheelchair ride comfort and ergonomics. DiGiovine MM; Cooper RA; Boninger ML; Lawrence BM; VanSickle DP; Rentschler AJ Arch Phys Med Rehabil; 2000 Apr; 81(4):490-4. PubMed ID: 10768541 [TBL] [Abstract][Full Text] [Related]
14. A Novel Tool for Quantifying and Promoting Physical Activity in Youths With Typical Development and Youths Who Are Ambulatory and Have Motor Disability. Lankhorst K; van den Berg-Emons RJ; Bussmann JBJ; Horemans HLD; de Groot JF Phys Ther; 2019 Mar; 99(3):354-363. PubMed ID: 30649497 [TBL] [Abstract][Full Text] [Related]
15. Wheelchair propulsion test: development and measurement properties of a new test for manual wheelchair users. Askari S; Kirby RL; Parker K; Thompson K; O'Neill J Arch Phys Med Rehabil; 2013 Sep; 94(9):1690-8. PubMed ID: 23499781 [TBL] [Abstract][Full Text] [Related]
16. Biomechanics and Physiology for Propelling Wheelchair Uphill Slope. Hashizume T; Kitagawa H; Lee H; Ueda H; Yoneda I; Booka M Stud Health Technol Inform; 2015; 217():447-54. PubMed ID: 26294512 [TBL] [Abstract][Full Text] [Related]
17. Trunk and neck kinematics during overground manual wheelchair propulsion in persons with tetraplegia. Julien MC; Morgan K; Stephens CL; Standeven J; Engsberg J Disabil Rehabil Assist Technol; 2014 May; 9(3):213-8. PubMed ID: 23548111 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Manual Wheelchair and Pushrim-Activated Power-Assisted Wheelchair Propulsion Characteristics during Common Over-Ground Maneuvers. Khalili M; Kryt G; Mortenson WB; Van der Loos HFM; Borisoff J Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770323 [TBL] [Abstract][Full Text] [Related]
19. Wheelchair propulsion biomechanics and wheelers' quality of life: an exploratory review. Chow JW; Levy CE Disabil Rehabil Assist Technol; 2011; 6(5):365-77. PubMed ID: 20932232 [TBL] [Abstract][Full Text] [Related]
20. Development and evaluation of a gyroscope-based wheel rotation monitor for manual wheelchair users. Hiremath SV; Ding D; Cooper RA J Spinal Cord Med; 2013 Jul; 36(4):347-56. PubMed ID: 23820150 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]