These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 29641902)

  • 1. Surface Plasmon-Mediated Nanoscale Localization of Laser-Driven sub-Terahertz Spin Dynamics in Magnetic Dielectrics.
    Chekhov AL; Stognij AI; Satoh T; Murzina TV; Razdolski I; Stupakiewicz A
    Nano Lett; 2018 May; 18(5):2970-2975. PubMed ID: 29641902
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Plasmon-Enhanced Photomagnetic Excitation of Spin Dynamics in Au/YIG:Co Magneto-Plasmonic Crystals.
    Kazlou A; Chekhov AL; Stognij AI; Razdolski I; Stupakiewicz A
    ACS Photonics; 2021 Aug; 8(8):2197-2202. PubMed ID: 34476286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Few-Cycle Surface Plasmon Polaritons.
    Komatsu K; Pápa Z; Jauk T; Bernecker F; Tóth L; Lackner F; Ernst WE; Ditlbacher H; Krenn JR; Ossiander M; Dombi P; Schultze M
    Nano Lett; 2024 Feb; 24(8):2637-2642. PubMed ID: 38345784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Femtosecond Laser-Excitation-Driven High Frequency Standing Spin Waves in Nanoscale Dielectric Thin Films of Iron Garnets.
    Deb M; Popova E; Hehn M; Keller N; Petit-Watelot S; Bargheer M; Mangin S; Malinowski G
    Phys Rev Lett; 2019 Jul; 123(2):027202. PubMed ID: 31386535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Terahertz and Infrared Plasmon Polaritons in PtTe
    Macis S; D'Arco A; Mosesso L; Paolozzi MC; Tofani S; Tomarchio L; Tummala PP; Ghomi S; Stopponi V; Bonaventura E; Massetti C; Codegoni D; Serafini A; Targa P; Zacchigna M; Lamperti A; Martella C; Molle A; Lupi S
    Adv Mater; 2024 Jul; 36(29):e2400554. PubMed ID: 38733453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of surface plasmon polariton excitation via feedback-based wavefront shaping.
    Ye X; Liu H; Qiao Y; Chen X
    Opt Lett; 2018 Dec; 43(24):6021-6024. PubMed ID: 30547994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser-launched evanescent surface plasmon polariton field utilized as a direct coherent pumping source to generate emitted nonlinear four-wave mixing radiation.
    Zhang Q; Lin K; Luo Y
    Opt Express; 2011 Mar; 19(6):4991-5001. PubMed ID: 21445135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast Microscopy of Spin-Momentum-Locked Surface Plasmon Polaritons.
    Dai Y; Dąbrowski M; Apkarian VA; Petek H
    ACS Nano; 2018 Jul; 12(7):6588-6596. PubMed ID: 29883101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly efficient broadband ultrafast plasmonics.
    Ashall B; López-Barberá JF; McClean-Ilten É; Zerulla D
    Opt Express; 2013 Nov; 21(22):27383-91. PubMed ID: 24216960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lateral and temporal dependence of the transport through an atomic gold contact under light irradiation: signature of propagating surface plasmon polaritons.
    Benner D; Boneberg J; Nürnberger P; Waitz R; Leiderer P; Scheer E
    Nano Lett; 2014 Sep; 14(9):5218-23. PubMed ID: 25089588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective Coherent Anti-Stokes Raman Scattering Microscopy Employing Dual-Wavelength Nanofocused Ultrafast Plasmon Pulses.
    Tomita K; Kojima Y; Kannari F
    Nano Lett; 2018 Feb; 18(2):1366-1372. PubMed ID: 29376374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlocal and Nonlinear Surface Plasmon Polaritons and Optical Spatial Solitons Induced by the Thermocapillary Effect.
    Rubin S; Fainman Y
    Phys Rev Lett; 2018 Jun; 120(24):243904. PubMed ID: 29956965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Femtosecond nanofocusing with full optical waveform control.
    Berweger S; Atkin JM; Xu XG; Olmon RL; Raschke MB
    Nano Lett; 2011 Oct; 11(10):4309-13. PubMed ID: 21879749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies.
    Pogna EAA; Pistore V; Viti L; Li L; Davies AG; Linfield EH; Vitiello MS
    Nat Commun; 2024 Mar; 15(1):2373. PubMed ID: 38490988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface plasmon polariton amplification upon electrical injection in highly integrated plasmonic circuits.
    Fedyanin DY; Krasavin AV; Arsenin AV; Zayats AV
    Nano Lett; 2012 May; 12(5):2459-63. PubMed ID: 22448893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic field modulation of intense surface plasmon polaritons.
    Clavero C; Yang K; Skuza JR; Lukaszew RA
    Opt Express; 2010 Apr; 18(8):7743-52. PubMed ID: 20588615
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast optical excitation of magnetic skyrmions.
    Ogawa N; Seki S; Tokura Y
    Sci Rep; 2015 Apr; 5():9552. PubMed ID: 25897634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light on the Tip of a Needle: Plasmonic Nanofocusing for Spectroscopy on the Nanoscale.
    Berweger S; Atkin JM; Olmon RL; Raschke MB
    J Phys Chem Lett; 2012 Apr; 3(7):945-52. PubMed ID: 26286425
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong Localization of Surface Plasmon Polaritons with Engineered Disorder.
    Shi WB; Liu LZ; Peng R; Xu DH; Zhang K; Jing H; Fan RH; Huang XR; Wang QJ; Wang M
    Nano Lett; 2018 Mar; 18(3):1896-1902. PubMed ID: 29432022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Harvesting of surface plasmon polaritons: Role of the confinement factor.
    Gong ZY; Xie Z; Tian G; Duan S; Luo Y
    J Chem Phys; 2020 Sep; 153(9):094107. PubMed ID: 32891094
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.