These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 29641915)

  • 1. Microkinetic Analysis and Scaling Relations for Catalyst Design.
    Motagamwala AH; Ball MR; Dumesic JA
    Annu Rev Chem Biomol Eng; 2018 Jun; 9():413-450. PubMed ID: 29641915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microkinetic Modeling: A Tool for Rational Catalyst Design.
    Motagamwala AH; Dumesic JA
    Chem Rev; 2021 Jan; 121(2):1049-1076. PubMed ID: 33205961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of reaction schemes using maximum rates of constituent steps.
    Motagamwala AH; Dumesic JA
    Proc Natl Acad Sci U S A; 2016 May; 113(21):E2879-88. PubMed ID: 27162366
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards rational catalyst design: boosting the rapid prediction of transition-metal activity by improved scaling relations.
    Wang Y; Xiao L; Qi Y; Mahmoodinia M; Feng X; Yang J; Zhu YA; Chen D
    Phys Chem Chem Phys; 2019 Sep; 21(35):19269-19280. PubMed ID: 31441913
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Theory-Experiment Parity for Activity and Selectivity in Heterogeneous Catalysis Using Microkinetic Modeling.
    Xie W; Xu J; Chen J; Wang H; Hu P
    Acc Chem Res; 2022 May; 55(9):1237-1248. PubMed ID: 35442027
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental microkinetic approach of the photocatalytic oxidation of isopropyl alcohol on TiO2. Part 2. from the surface elementary steps to the rates of oxidation of the C3H(x)O species.
    Arsac F; Bianchi D; Chovelon JM; Ferronato C; Herrmann JM
    J Phys Chem A; 2006 Mar; 110(12):4213-22. PubMed ID: 16553372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical Heterogeneous Catalysis: Scaling Relationships and Computational Catalyst Design.
    Greeley J
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():605-35. PubMed ID: 27088666
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reactivity of chemisorbed oxygen atoms and their catalytic consequences during CH4-O2 catalysis on supported Pt clusters.
    Chin YH; Buda C; Neurock M; Iglesia E
    J Am Chem Soc; 2011 Oct; 133(40):15958-78. PubMed ID: 21919447
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental microkinetic approach of the photocatalytic oxidation of isopropyl alcohol on TiO2. Part 1. Surface elementary steps involving gaseous and adsorbed C3H(x)O species.
    Arsac F; Bianchi D; Chovelon JM; Ferronato C; Herrmann JM
    J Phys Chem A; 2006 Mar; 110(12):4202-12. PubMed ID: 16553371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations.
    Ferrin P; Simonetti D; Kandoi S; Kunkes E; Dumesic JA; Nørskov JK; Mavrikakis M
    J Am Chem Soc; 2009 Apr; 131(16):5809-15. PubMed ID: 19334787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Lattice Kinetic Monte Carlo Solver for First-Principles Microkinetic Trend Studies.
    Hoffmann MJ; Bligaard T
    J Chem Theory Comput; 2018 Mar; 14(3):1583-1593. PubMed ID: 29357239
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combining Computational Modeling with Reaction Kinetics Experiments for Elucidating the
    Bhandari S; Rangarajan S; Mavrikakis M
    Acc Chem Res; 2020 Sep; 53(9):1893-1904. PubMed ID: 32869965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SurfKin: an ab initio kinetic code for modeling surface reactions.
    Le TN; Liu B; Huynh LK
    J Comput Chem; 2014 Oct; 35(26):1890-9. PubMed ID: 25111729
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactivity Descriptor in Solid Acid Catalysis: Predicting Turnover Frequencies for Propene Methylation in Zeotypes.
    Wang CM; Brogaard RY; Weckhuysen BM; Nørskov JK; Studt F
    J Phys Chem Lett; 2014 May; 5(9):1516-21. PubMed ID: 26270089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the components' interface on the synthesis of methanol over Cu/ZnO from CO2/H2: a microkinetic analysis based on DFT + U calculations.
    Tang QL; Zou WT; Huang RK; Wang Q; Duan XX
    Phys Chem Chem Phys; 2015 Mar; 17(11):7317-33. PubMed ID: 25697118
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micki: A python-based object-oriented microkinetic modeling code.
    Hermes ED; Janes AN; Schmidt JR
    J Chem Phys; 2019 Jul; 151(1):014112. PubMed ID: 31272177
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using degrees of rate control to improve selective n-butane oxidation over model MOF-encapsulated catalysts: sterically-constrained Ag3Pd(111).
    Dix ST; Scott JK; Getman RB; Campbell CT
    Faraday Discuss; 2016 Jul; 188():21-38. PubMed ID: 27271786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A self-adjusting platinum surface for acetone hydrogenation.
    Demir B; Kropp T; Rivera-Dones KR; Gilcher EB; Huber GW; Mavrikakis M; Dumesic JA
    Proc Natl Acad Sci U S A; 2020 Feb; 117(7):3446-3450. PubMed ID: 32005709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of morphological changes of catalyst materials under reaction conditions by combined
    Cheula R; Soon A; Maestri M
    Catal Sci Technol; 2018 Jul; 8(14):3493-3503. PubMed ID: 30713655
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Assessment of a Criterion for the Application of Brønsted-Evans-Polanyi Relations for Dissociation Catalytic Reactions at Surfaces.
    Ding ZB; Maestri M
    Ind Eng Chem Res; 2019 Jun; 58(23):9864-9874. PubMed ID: 31303692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.