These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 29641975)

  • 1. Prediction of lysine glutarylation sites by maximum relevance minimum redundancy feature selection.
    Ju Z; He JJ
    Anal Biochem; 2018 Jun; 550():1-7. PubMed ID: 29641975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of lysine propionylation sites using biased SVM and incorporating four different sequence features into Chou's PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Sep; 76():356-363. PubMed ID: 28763688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of S-sulfenylation sites using mRMR feature selection and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    J Theor Biol; 2018 Nov; 457():6-13. PubMed ID: 30125576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization and identification of lysine glutarylation based on intrinsic interdependence between positions in the substrate sites.
    Huang KY; Kao HJ; Hsu JB; Weng SL; Lee TY
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):384. PubMed ID: 30717647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iGlu-Lys: A Predictor for Lysine Glutarylation Through Amino Acid Pair Order Features.
    Xu Y; Yang Y; Ding J; Li C
    IEEE Trans Nanobioscience; 2018 Oct; 17(4):394-401. PubMed ID: 29994125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of lysine formylation sites using the composition of k-spaced amino acid pairs via Chou's 5-steps rule and general pseudo components.
    Ju Z; Wang SY
    Genomics; 2020 Jan; 112(1):859-866. PubMed ID: 31175975
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RF-GlutarySite: a random forest based predictor for glutarylation sites.
    Al-Barakati HJ; Saigo H; Newman RH; Kc DB
    Mol Omics; 2019 Jun; 15(3):189-204. PubMed ID: 31025681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FCCCSR_Glu: a semi-supervised learning model based on FCCCSR algorithm for prediction of glutarylation sites.
    Ning Q; Qi Z; Wang Y; Deng A; Chen C
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36168700
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features.
    Arafat ME; Ahmad MW; Shovan SM; Dehzangi A; Dipta SR; Hasan MAM; Taherzadeh G; Shatabda S; Sharma A
    Genes (Basel); 2020 Aug; 11(9):. PubMed ID: 32878321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. iGlu_AdaBoost: Identification of Lysine Glutarylation Using the AdaBoost Classifier.
    Dou L; Li X; Zhang L; Xiang H; Xu L
    J Proteome Res; 2021 Jan; 20(1):191-201. PubMed ID: 33090794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of lysine HMGylation sites using multiple feature extraction and fuzzy support vector machine.
    Ju Z; Wang SY
    Anal Biochem; 2023 Feb; 663():115032. PubMed ID: 36592921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of lysine crotonylation sites by incorporating the composition of k-spaced amino acid pairs into Chou's general PseAAC.
    Ju Z; He JJ
    J Mol Graph Model; 2017 Oct; 77():200-204. PubMed ID: 28886434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting lysine lipoylation sites using bi-profile bayes feature extraction and fuzzy support vector machine algorithm.
    Ju Z; Wang SY
    Anal Biochem; 2018 Nov; 561-562():11-17. PubMed ID: 30218638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Predicting lysine phosphoglycerylation with fuzzy SVM by incorporating k-spaced amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2016 May; 397():145-50. PubMed ID: 26908349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iLM-2L: A two-level predictor for identifying protein lysine methylation sites and their methylation degrees by incorporating K-gap amino acid pairs into Chou׳s general PseAAC.
    Ju Z; Cao JZ; Gu H
    J Theor Biol; 2015 Nov; 385():50-7. PubMed ID: 26254214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of protein N-formylation using the composition of k-spaced amino acid pairs.
    Ju Z; Cao JZ
    Anal Biochem; 2017 Oct; 534():40-45. PubMed ID: 28709899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preparation of Affinity Purified Antibodies against ε-Glutaryl-Lysine Residues in Proteins for Investigation of Glutarylated Proteins in Animal Tissues.
    Artiukhov AV; Kolesanova EF; Boyko AI; Chashnikova AA; Gnedoy SN; Kaehne T; Ivanova DA; Kolesnichenko AV; Aleshin VA; Bunik VI
    Biomolecules; 2021 Aug; 11(8):. PubMed ID: 34439834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteome-wide Lysine Glutarylation Profiling of the Mycobacterium tuberculosis H37Rv.
    Xie L; Wang G; Yu Z; Zhou M; Li Q; Huang H; Xie J
    J Proteome Res; 2016 Apr; 15(4):1379-85. PubMed ID: 26903315
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of 2-hydroxyisobutyrylation sites by integrating multiple sequence features with ensemble support vector machine.
    Ju Z; Wang SY
    Comput Biol Chem; 2020 May; 87():107280. PubMed ID: 32505881
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting lysine glycation sites using bi-profile bayes feature extraction.
    Ju Z; Sun J; Li Y; Wang L
    Comput Biol Chem; 2017 Dec; 71():98-103. PubMed ID: 29040908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.