BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

411 related articles for article (PubMed ID: 29642066)

  • 1. Neutrophils and Bacterial Immune Evasion.
    Kobayashi SD; Malachowa N; DeLeo FR
    J Innate Immun; 2018; 10(5-6):432-441. PubMed ID: 29642066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutrophils and Immunity: From Bactericidal Action to Being Conquered.
    Teng TS; Ji AL; Ji XY; Li YZ
    J Immunol Res; 2017; 2017():9671604. PubMed ID: 28299345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Specialized Pro-Resolving Mediators in Modifying Host Defense and Decreasing Bacterial Virulence.
    Thornton JM; Yin K
    Molecules; 2021 Nov; 26(22):. PubMed ID: 34834062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epic Immune Battles of History: Neutrophils vs.
    Guerra FE; Borgogna TR; Patel DM; Sward EW; Voyich JM
    Front Cell Infect Microbiol; 2017; 7():286. PubMed ID: 28713774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insights into mechanisms used by Staphylococcus aureus to avoid destruction by human neutrophils.
    Voyich JM; Braughton KR; Sturdevant DE; Whitney AR; Saïd-Salim B; Porcella SF; Long RD; Dorward DW; Gardner DJ; Kreiswirth BN; Musser JM; DeLeo FR
    J Immunol; 2005 Sep; 175(6):3907-19. PubMed ID: 16148137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils.
    Borjesson DL; Kobayashi SD; Whitney AR; Voyich JM; Argue CM; Deleo FR
    J Immunol; 2005 May; 174(10):6364-72. PubMed ID: 15879137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How has neutrophil research improved our understanding of periodontal pathogenesis?
    Nussbaum G; Shapira L
    J Clin Periodontol; 2011 Mar; 38 Suppl 11():49-59. PubMed ID: 21323704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The VraSR regulatory system contributes to virulence in Streptococcus suis via resistance to innate immune defenses.
    Chang P; Li W; Shi G; Li H; Yang X; Xia Z; Ren Y; Li Z; Chen H; Bei W
    Virulence; 2018 Dec; 9(1):771-782. PubMed ID: 29471718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutrophil serine proteases in antibacterial defense.
    Stapels DA; Geisbrecht BV; Rooijakkers SH
    Curr Opin Microbiol; 2015 Feb; 23():42-8. PubMed ID: 25461571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Apoptosis, cell death and inflammation.
    Witko-Sarsat V
    J Innate Immun; 2010; 2(3):201-3. PubMed ID: 20375557
    [No Abstract]   [Full Text] [Related]  

  • 11.
    Pietrocola G; Nobile G; Rindi S; Speziale P
    Front Cell Infect Microbiol; 2017; 7():166. PubMed ID: 28529927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acinetobacter baumannii phenylacetic acid metabolism influences infection outcome through a direct effect on neutrophil chemotaxis.
    Bhuiyan MS; Ellett F; Murray GL; Kostoulias X; Cerqueira GM; Schulze KE; Mahamad Maifiah MH; Li J; Creek DJ; Lieschke GJ; Peleg AY
    Proc Natl Acad Sci U S A; 2016 Aug; 113(34):9599-604. PubMed ID: 27506797
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autophagy mediates neutrophil responses to bacterial infection.
    Chargui A; El May MV
    APMIS; 2014 Nov; 122(11):1047-58. PubMed ID: 24735202
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Streptococcus pyogenes and human neutrophils: a paradigm for evasion of innate host defense by bacterial pathogens.
    Voyich JM; Musser JM; DeLeo FR
    Microbes Infect; 2004 Oct; 6(12):1117-23. PubMed ID: 15380782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. When two is better than one: macrophages and neutrophils work in concert in innate immunity as complementary and cooperative partners of a myeloid phagocyte system.
    Silva MT
    J Leukoc Biol; 2010 Jan; 87(1):93-106. PubMed ID: 20052802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neutrophil apoptosis in the context of tuberculosis infection.
    Alemán M
    Tuberculosis (Edinb); 2015 Jul; 95(4):359-63. PubMed ID: 25864404
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutrophil evasion strategies by Streptococcus pneumoniae and Staphylococcus aureus.
    Lewis ML; Surewaard BGJ
    Cell Tissue Res; 2018 Mar; 371(3):489-503. PubMed ID: 29204747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of Epithelial Immunity Evasion by Respiratory Bacterial Pathogens.
    Sharma L; Feng J; Britto CJ; Dela Cruz CS
    Front Immunol; 2020; 11():91. PubMed ID: 32117248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat.
    Nasser A; Moradi M; Jazireian P; Safari H; Alizadeh-Sani M; Pourmand MR; Azimi T
    Microb Pathog; 2019 Jun; 131():259-269. PubMed ID: 31002964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tpl2 promotes neutrophil trafficking, oxidative burst, and bacterial killing.
    Acuff NV; Li X; Elmore J; Rada B; Watford WT
    J Leukoc Biol; 2017 Jun; 101(6):1325-1333. PubMed ID: 28356348
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.