BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 29642446)

  • 1. Scalable Fabrication of High-Performance Transparent Conductors Using Graphene Oxide-Stabilized Single-Walled Carbon Nanotube Inks.
    He L; Liao C; Tjong SC
    Nanomaterials (Basel); 2018 Apr; 8(4):. PubMed ID: 29642446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous and scalable fabrication of transparent conducting carbon nanotube films.
    Dan B; Irvin GC; Pasquali M
    ACS Nano; 2009 Apr; 3(4):835-43. PubMed ID: 19354279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly conductive single-walled carbon nanotube thin film preparation by direct alignment on substrates from water dispersions.
    Azoz S; Exarhos AL; Marquez A; Gilbertson LM; Nejati S; Cha JJ; Zimmerman JB; Kikkawa JM; Pfefferle LD
    Langmuir; 2015 Jan; 31(3):1155-63. PubMed ID: 25547120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transparent conductive thin film synthesis based on single-walled carbon nanotubes dispersion containing polymethylmethacrylate binder.
    Jung H; An SY; Lim JS; Kim D
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6345-9. PubMed ID: 22121713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Free-standing highly conductive transparent ultrathin single-walled carbon nanotube films.
    Liu Q; Fujigaya T; Cheng HM; Nakashima N
    J Am Chem Soc; 2010 Nov; 132(46):16581-6. PubMed ID: 21028804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of the rheological properties of carbon nanotube dispersions on the processing and properties of transparent conductive electrodes.
    Maillaud L; Poulin P; Pasquali M; Zakri C
    Langmuir; 2015 Jun; 31(21):5928-34. PubMed ID: 25961667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrathin single-walled carbon nanotube network framed graphene hybrids.
    Wang R; Hong T; Xu YQ
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5233-8. PubMed ID: 25686199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of flexible transparent conductive film (TCF) using single walled carbon nanotubes.
    Park SY; Kim PG; Jeong IB; Shin DW; Yoo JB; Hyun SH
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7491-5. PubMed ID: 19908815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large-Area Flexible Carbon Nanofilms with Synergistically Enhanced Transmittance and Conductivity Prepared by Reorganizing Single-Walled Carbon Nanotube Networks.
    Yue Y; Zhang D; Wang P; Xia X; Wu X; Zhang Y; Mei J; Li S; Li M; Wang Y; Zhang X; Wei X; Liu H; Zhou W
    Adv Mater; 2024 Jun; 36(26):e2313971. PubMed ID: 38573651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transparent conductors from layer-by-layer assembled SWNT films: importance of mechanical properties and a new figure of merit.
    Shim BS; Zhu J; Jan E; Critchley K; Kotov NA
    ACS Nano; 2010 Jul; 4(7):3725-34. PubMed ID: 20552974
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A review of fabrication and applications of carbon nanotube film-based flexible electronics.
    Park S; Vosguerichian M; Bao Z
    Nanoscale; 2013 Mar; 5(5):1727-52. PubMed ID: 23381727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Aqueous Process for Preparing Flexible Transparent Electrodes Using Non-Oxidized Graphene/Single-Walled Carbon Nanotube Hybrid Solution.
    Oh MJ; Son GC; Kim M; Jeon J; Kim YH; Son M
    Nanomaterials (Basel); 2023 Aug; 13(15):. PubMed ID: 37570566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of transparent carbon nanotube networks of homogeneous electronic type.
    Jackson RK; Munro A; Nebesny K; Armstrong N; Graham S
    ACS Nano; 2010 Mar; 4(3):1377-84. PubMed ID: 20201542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wafer-Scale Thermophoretic Dry Deposition of Single-Walled Carbon Nanotube Thin Films.
    Laiho P; Rafiee M; Liao Y; Hussain A; Ding EX; Kauppinen EI
    ACS Omega; 2018 Jan; 3(1):1322-1328. PubMed ID: 31457968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication and characterization of thin films of single-walled carbon nanotube bundles on flexible plastic substrates.
    Saran N; Parikh K; Suh DS; Muñoz E; Kolla H; Manohar SK
    J Am Chem Soc; 2004 Apr; 126(14):4462-3. PubMed ID: 15070332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient coating of transparent and conductive carbon nanotube thin films on plastic substrates.
    Andrew Ng MH; Hartadi LT; Tan H; Patrick Poa CH
    Nanotechnology; 2008 May; 19(20):205703. PubMed ID: 21825746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition.
    Zhang Q; Wei N; Laiho P; Kauppinen EI
    Top Curr Chem (Cham); 2017 Nov; 375(6):90. PubMed ID: 29181596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly conductive carbon-based aqueous inks toward electroluminescent devices, printed capacitive sensors and flexible wearable electronics.
    Liao Y; Zhang R; Wang H; Ye S; Zhou Y; Ma T; Zhu J; Pfefferle LD; Qian J
    RSC Adv; 2019 May; 9(27):15184-15189. PubMed ID: 35514818
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Superacid-Surfactant Exchange: Enabling Nondestructive Dispersion of Full-Length Carbon Nanotubes in Water.
    Wang P; Kim M; Peng Z; Sun CF; Mok J; Lieberman A; Wang Y
    ACS Nano; 2017 Sep; 11(9):9231-9238. PubMed ID: 28792746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Waterborne Graphene- and Nanocellulose-Based Inks for Functional Conductive Films and 3D Structures.
    González-Domínguez JM; Baigorri A; Álvarez-Sánchez MÁ; Colom E; Villacampa B; Ansón-Casaos A; García-Bordejé E; Benito AM; Maser WK
    Nanomaterials (Basel); 2021 May; 11(6):. PubMed ID: 34072356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.