These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
432 related articles for article (PubMed ID: 29642455)
21. Multi-Gb/s visible light communication based on AlGaInP amber micro-LED. Gao X; Yu T; Chang T; Wu D; Xie M; Chi N; Wang Y; Shi Z Opt Express; 2024 Mar; 32(6):10732-10740. PubMed ID: 38571277 [TBL] [Abstract][Full Text] [Related]
22. Modelling and Design of Pre-Equalizers for a Fully Operational Visible Light Communication System. Bostanoglu M; Dalveren Y; Catak FO; Kara A Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420750 [TBL] [Abstract][Full Text] [Related]
23. Real-time investigation of CAP transceivers with hybrid digital equalization for visible light communication. Mao Y; Jin X; Pan W; Liu W; Jin M; Gong C; Xu Z Opt Express; 2019 Apr; 27(7):9382-9393. PubMed ID: 31045090 [TBL] [Abstract][Full Text] [Related]
24. Real-time white-light phosphor-LED visible light communication (VLC) with compact size. Yeh CH; Liu YL; Chow CW Opt Express; 2013 Nov; 21(22):26192-7. PubMed ID: 24216843 [TBL] [Abstract][Full Text] [Related]
25. Bandwidth enhancement with DAC-enabled pre-equalization and real-valued precoding for a FBMC-VLC. Chen M; Cai Y; Zhou J; Zhou H; Liu Y; Chen Q Opt Lett; 2022 Sep; 47(18):4826-4829. PubMed ID: 36107100 [TBL] [Abstract][Full Text] [Related]
26. Indoor multiuser visible light communication systems using Hadamard-coded modulation. Lian J; Noshad M; Brandt-Pearce M Philos Trans A Math Phys Eng Sci; 2020 Apr; 378(2169):20190183. PubMed ID: 32114925 [TBL] [Abstract][Full Text] [Related]
27. On-Demand Sensor Node Wake-Up Using Solar Panels and Visible Light Communication. Carrascal C; Demirkol I; Paradells J Sensors (Basel); 2016 Mar; 16(3):. PubMed ID: 27011190 [TBL] [Abstract][Full Text] [Related]
28. High-power blue superluminescent diode for high CRI lighting and high-speed visible light communication. Alatawi AA; Holguin-Lerma JA; Kang CH; Shen C; Subedi RC; Albadri AM; Alyamani AY; Ng TK; Ooi BS Opt Express; 2018 Oct; 26(20):26355-26364. PubMed ID: 30469724 [TBL] [Abstract][Full Text] [Related]
29. All-inorganic liquid phase quantum dots and blue laser diode-based white-light source for simultaneous high-speed visible light communication and high-efficiency solid-state lighting. Ali A; Qasem ZAH; Li Y; Li Q; Fu HY Opt Express; 2022 Sep; 30(20):35112-35124. PubMed ID: 36258470 [TBL] [Abstract][Full Text] [Related]
30. A Review of Hybrid VLC/RF Networks: Features, Applications, and Future Directions. Bravo Alvarez L; Montejo-Sánchez S; Rodríguez-López L; Azurdia-Meza C; Saavedra G Sensors (Basel); 2023 Aug; 23(17):. PubMed ID: 37688001 [TBL] [Abstract][Full Text] [Related]
31. Improving the modulation bandwidth of LED by CdSe/ZnS quantum dots for visible light communication. Xiao X; Tang H; Zhang T; Chen W; Chen W; Wu D; Wang R; Wang K Opt Express; 2016 Sep; 24(19):21577-86. PubMed ID: 27661896 [TBL] [Abstract][Full Text] [Related]
32. Device Management and Data Transport in IoT Networks Based on Visible Light Communication. Kim CM; Koh SJ Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30127318 [TBL] [Abstract][Full Text] [Related]
33. Illumination, data transmission, and energy harvesting: the threefold advantage of VLC. Sandalidis HG; Vavoulas A; Tsiftsis TA; Vaiopoulos N Appl Opt; 2017 Apr; 56(12):3421-3427. PubMed ID: 28430208 [TBL] [Abstract][Full Text] [Related]
34. Visible Light Communication: A System Perspective-Overview and Challenges. Rehman SU; Ullah S; Chong PHJ; Yongchareon S; Komosny D Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30866473 [TBL] [Abstract][Full Text] [Related]
35. A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application. Li H; Chen X; Guo J; Chen H Opt Express; 2014 Nov; 22(22):27203-13. PubMed ID: 25401871 [TBL] [Abstract][Full Text] [Related]
36. High-brightness semipolar (2021¯) blue InGaN/GaN superluminescent diodes for droop-free solid-state lighting and visible-light communications. Shen C; Ng TK; Leonard JT; Pourhashemi A; Nakamura S; DenBaars SP; Speck JS; Alyamani AY; El-Desouki MM; Ooi BS Opt Lett; 2016 Jun; 41(11):2608-11. PubMed ID: 27244426 [TBL] [Abstract][Full Text] [Related]
37. NOMA-Based VLC Systems: A Comprehensive Review. Mohsan SAH; Sadiq M; Li Y; Shvetsov AV; Shvetsova SV; Shafiq M Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991671 [TBL] [Abstract][Full Text] [Related]
38. Towards a 100 Gb/s visible light wireless access network. Tsonev D; Videv S; Haas H Opt Express; 2015 Jan; 23(2):1627-37. PubMed ID: 25835920 [TBL] [Abstract][Full Text] [Related]
39. Integrated 10 Gb/s multilevel multiband passive optical network and 500 Mb/s indoor visible light communication system based on Nyquist single carrier frequency domain equalization modulation. Wang Y; Shi J; Yang C; Wang Y; Chi N Opt Lett; 2014 May; 39(9):2576-9. PubMed ID: 24784049 [TBL] [Abstract][Full Text] [Related]
40. Reversed Three-Dimensional Visible Light Indoor Positioning Utilizing Annular Receivers with Multi-Photodiodes. Xu Y; Zhao J; Shi J; Chi N Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27509504 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]