These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 29642459)

  • 1. Bearing Fault Diagnosis by a Robust Higher-Order Super-Twisting Sliding Mode Observer.
    Piltan F; Kim JM
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29642459
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bearing Fault Diagnosis Using an Extended Variable Structure Feedback Linearization Observer.
    Piltan F; Kim JM
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30544685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crack Size Identification for Bearings Using an Adaptive Digital Twin.
    Piltan F; Kim JM
    Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Novel Characteristic Frequency Bands Extraction Method for Automatic Bearing Fault Diagnosis Based on Hilbert Huang Transform.
    Yu X; Ding E; Chen C; Liu X; Li L
    Sensors (Basel); 2015 Nov; 15(11):27869-93. PubMed ID: 26540059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bearing Fault Diagnosis Using a Hybrid Fuzzy V-Structure Fault Estimator Scheme.
    Piltan F; Kim JM
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning-Based Adaptive Neural-Fuzzy Structure Scheme for Bearing Fault Pattern Recognition and Crack Size Identification.
    Piltan F; Duong BP; Kim JM
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33802732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive super-twisting observer for fault reconstruction in electro-hydraulic systems.
    Bahrami M; Naraghi M; Zareinejad M
    ISA Trans; 2018 May; 76():235-245. PubMed ID: 29606494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive-gain fast super-twisting sliding mode fault tolerant control for a reusable launch vehicle in reentry phase.
    Zhang Y; Tang S; Guo J
    ISA Trans; 2017 Nov; 71(Pt 2):380-390. PubMed ID: 28882318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Fault Detection Method for Rolling Bearings Based on Non-Stationary Vibration Signature Analysis.
    Zhen D; Guo J; Xu Y; Zhang H; Gu F
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31527448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid Rubbing Fault Identification Using a Deep Learning-Based Observation Technique.
    Prosvirin AE; Piltan F; Kim JM
    IEEE Trans Neural Netw Learn Syst; 2021 Nov; 32(11):5144-5155. PubMed ID: 33031043
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Online Condition Monitoring of Bearings to Support Total Productive Maintenance in the Packaging Materials Industry.
    Gligorijevic J; Gajic D; Brkovic A; Savic-Gajic I; Georgieva O; Di Gennaro S
    Sensors (Basel); 2016 Mar; 16(3):316. PubMed ID: 26938541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visibility Graph Feature Model of Vibration Signals: A Novel Bearing Fault Diagnosis Approach.
    Zhang Z; Qin Y; Jia L; Chen X
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30428560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Hybrid Feature Model and Deep-Learning-Based Bearing Fault Diagnosis.
    Sohaib M; Kim CH; Kim JM
    Sensors (Basel); 2017 Dec; 17(12):. PubMed ID: 29232908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of higher order spectral features and support vector machines for bearing faults classification.
    Saidi L; Ben Ali J; Fnaiech F
    ISA Trans; 2015 Jan; 54():193-206. PubMed ID: 25282095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Hybrid Technique Combining Improved Cepstrum Pre-Whitening and High-Pass Filtering for Effective Bearing Fault Diagnosis Using Vibration Data.
    Kiakojouri A; Lu Z; Mirring P; Powrie H; Wang L
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tacholess envelope order analysis and its application to fault detection of rolling element bearings with varying speeds.
    Zhao M; Lin J; Xu X; Lei Y
    Sensors (Basel); 2013 Aug; 13(8):10856-75. PubMed ID: 23959244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel feature extraction method for bearing fault classification with one dimensional ternary patterns.
    Kuncan M; Kaplan K; Mi Naz MR; Kaya Y; Ertunç HM
    ISA Trans; 2020 May; 100():346-357. PubMed ID: 31732141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive super-twisting sliding mode observer based robust backstepping sensorless speed control for IPMSM.
    Wu S; Zhang J; Chai B
    ISA Trans; 2019 Sep; 92():155-165. PubMed ID: 31056215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sliding mode observer based incipient sensor fault detection with application to high-speed railway traction device.
    Zhang K; Jiang B; Yan XG; Mao Z
    ISA Trans; 2016 Jul; 63():49-59. PubMed ID: 27156675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated Fault Estimation and Fault-Tolerant Tracking Control for Lipschitz Nonlinear Multiagent Systems.
    Zhao X; Zong Q; Tian B; Liu W
    IEEE Trans Cybern; 2020 Feb; 50(2):678-688. PubMed ID: 30296250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.