These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 29642837)

  • 1. Approximate inference of gene regulatory network models from RNA-Seq time series data.
    Thorne T
    BMC Bioinformatics; 2018 Apr; 19(1):127. PubMed ID: 29642837
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-scale dynamic gene regulatory network inference combining differential equation models with local dynamic Bayesian network analysis.
    Li Z; Li P; Krishnan A; Liu J
    Bioinformatics; 2011 Oct; 27(19):2686-91. PubMed ID: 21816876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying strengths and weaknesses of methods for computational network inference from single-cell RNA-seq data.
    McCalla SG; Fotuhi Siahpirani A; Li J; Pyne S; Stone M; Periyasamy V; Shin J; Roy S
    G3 (Bethesda); 2023 Mar; 13(3):. PubMed ID: 36626328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Max-Min High-Order Dynamic Bayesian Network for Learning Gene Regulatory Networks with Time-Delayed Regulations.
    Li Y; Chen H; Zheng J; Ngom A
    IEEE/ACM Trans Comput Biol Bioinform; 2016; 13(4):792-803. PubMed ID: 26336144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A multiorganism based method for Bayesian gene network estimation.
    Dawy Z; Yaacoub E; Nassar M; Abdallah R; Zeineddine HA
    Biosystems; 2011 Mar; 103(3):425-34. PubMed ID: 21168470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data.
    Sanchez-Castillo M; Blanco D; Tienda-Luna IM; Carrion MC; Huang Y
    Bioinformatics; 2018 Mar; 34(6):964-970. PubMed ID: 29028984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-homogeneous dynamic Bayesian network with sequentially coupled interaction parameters for applications in systems and synthetic biology.
    Grzegorczyk M; Husmeier D
    Stat Appl Genet Mol Biol; 2012 Jul; 11(4):. PubMed ID: 22850067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SLICER: inferring branched, nonlinear cellular trajectories from single cell RNA-seq data.
    Welch JD; Hartemink AJ; Prins JF
    Genome Biol; 2016 May; 17(1):106. PubMed ID: 27215581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast and accurate approximate inference of transcript expression from RNA-seq data.
    Hensman J; Papastamoulis P; Glaus P; Honkela A; Rattray M
    Bioinformatics; 2015 Dec; 31(24):3881-9. PubMed ID: 26315907
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CORNAS: coverage-dependent RNA-Seq analysis of gene expression data without biological replicates.
    Low JZB; Khang TF; Tammi MT
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):575. PubMed ID: 29297307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NetDiff - Bayesian model selection for differential gene regulatory network inference.
    Thorne T
    Sci Rep; 2016 Dec; 6():39224. PubMed ID: 27982083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRNET: an efficient sampling approach to infer functional regulatory networks by integrating large-scale ChIP-seq and time-course RNA-seq data.
    Chen X; Gu J; Wang X; Jung JG; Wang TL; Hilakivi-Clarke L; Clarke R; Xuan J
    Bioinformatics; 2018 May; 34(10):1733-1740. PubMed ID: 29280996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning genetic regulatory network connectivity from time series data.
    Barker NA; Myers CJ; Kuwahara H
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):152-65. PubMed ID: 21071804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overview and Evaluation of Recent Methods for Statistical Inference of Gene Regulatory Networks from Time Series Data.
    Grzegorczyk M; Aderhold A; Husmeier D
    Methods Mol Biol; 2019; 1883():49-94. PubMed ID: 30547396
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scPADGRN: A preconditioned ADMM approach for reconstructing dynamic gene regulatory network using single-cell RNA sequencing data.
    Zheng X; Huang Y; Zou X
    PLoS Comput Biol; 2020 Jul; 16(7):e1007471. PubMed ID: 32716923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential expression analysis of RNA sequencing data by incorporating non-exonic mapped reads.
    Chen HI; Liu Y; Zou Y; Lai Z; Sarkar D; Huang Y; Chen Y
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S14. PubMed ID: 26099631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An empirical Bayesian method for estimating biological networks from temporal microarray data.
    Rau A; Jaffrézic F; Foulley JL; Doerge RW
    Stat Appl Genet Mol Biol; 2010; 9():Article 9. PubMed ID: 20196759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A canonical correlation analysis-based dynamic bayesian network prior to infer gene regulatory networks from multiple types of biological data.
    Baur B; Bozdag S
    J Comput Biol; 2015 Apr; 22(4):289-99. PubMed ID: 25844668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved variational Bayes inference for transcript expression estimation.
    Papastamoulis P; Hensman J; Glaus P; Rattray M
    Stat Appl Genet Mol Biol; 2014 Apr; 13(2):203-16. PubMed ID: 24413218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-parametric modelling of temporal and spatial counts data from RNA-seq experiments.
    BinTayyash N; Georgaka S; John ST; Ahmed S; Boukouvalas A; Hensman J; Rattray M
    Bioinformatics; 2021 Nov; 37(21):3788-3795. PubMed ID: 34213536
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.