These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

593 related articles for article (PubMed ID: 29643021)

  • 1. Keeping track of sound objects in space: The contribution of early-stage auditory areas.
    Da Costa S; Clarke S; Crottaz-Herbette S
    Hear Res; 2018 Sep; 366():17-31. PubMed ID: 29643021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Where sound position influences sound object representations: a 7-T fMRI study.
    van der Zwaag W; Gentile G; Gruetter R; Spierer L; Clarke S
    Neuroimage; 2011 Feb; 54(3):1803-11. PubMed ID: 20965262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Representation of Sound Objects within Early-Stage Auditory Areas: A Repetition Effect Study Using 7T fMRI.
    Da Costa S; Bourquin NM; Knebel JF; Saenz M; van der Zwaag W; Clarke S
    PLoS One; 2015; 10(5):e0124072. PubMed ID: 25938430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human brain activation during passive listening to sounds from different locations: an fMRI and MEG study.
    Brunetti M; Belardinelli P; Caulo M; Del Gratta C; Della Penna S; Ferretti A; Lucci G; Moretti A; Pizzella V; Tartaro A; Torquati K; Olivetti Belardinelli M; Romani GL
    Hum Brain Mapp; 2005 Dec; 26(4):251-61. PubMed ID: 15954141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sound localization during homotopic and heterotopic bilateral cooling deactivation of primary and nonprimary auditory cortical areas in the cat.
    Malhotra S; Lomber SG
    J Neurophysiol; 2007 Jan; 97(1):26-43. PubMed ID: 17035367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Location-independent and location-linked representations of sound objects.
    Bourquin NM; Murray MM; Clarke S
    Neuroimage; 2013 Jun; 73():40-9. PubMed ID: 23357069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal characteristics of audiovisual information processing.
    Fuhrmann Alpert G; Hein G; Tsai N; Naumer MJ; Knight RT
    J Neurosci; 2008 May; 28(20):5344-9. PubMed ID: 18480290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulus-dependent activations and attention-related modulations in the auditory cortex: a meta-analysis of fMRI studies.
    Alho K; Rinne T; Herron TJ; Woods DL
    Hear Res; 2014 Jan; 307():29-41. PubMed ID: 23938208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automatic domain-general processing of sound source identity in the left posterior middle frontal gyrus.
    Giordano BL; Pernet C; Charest I; Belizaire G; Zatorre RJ; Belin P
    Cortex; 2014 Sep; 58():170-85. PubMed ID: 25038309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuronal representations of distance in human auditory cortex.
    Kopčo N; Huang S; Belliveau JW; Raij T; Tengshe C; Ahveninen J
    Proc Natl Acad Sci U S A; 2012 Jul; 109(27):11019-24. PubMed ID: 22699495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain.
    Warren JD; Griffiths TD
    J Neurosci; 2003 Jul; 23(13):5799-804. PubMed ID: 12843284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Psychophysics and neuronal bases of sound localization in humans.
    Ahveninen J; Kopčo N; Jääskeläinen IP
    Hear Res; 2014 Jan; 307():86-97. PubMed ID: 23886698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cortical representation of natural complex sounds: effects of acoustic features and auditory object category.
    Leaver AM; Rauschecker JP
    J Neurosci; 2010 Jun; 30(22):7604-12. PubMed ID: 20519535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Audiovisual functional magnetic resonance imaging adaptation reveals multisensory integration effects in object-related sensory cortices.
    Doehrmann O; Weigelt S; Altmann CF; Kaiser J; Naumer MJ
    J Neurosci; 2010 Mar; 30(9):3370-9. PubMed ID: 20203196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distinct pathways involved in sound recognition and localization: a human fMRI study.
    Maeder PP; Meuli RA; Adriani M; Bellmann A; Fornari E; Thiran JP; Pittet A; Clarke S
    Neuroimage; 2001 Oct; 14(4):802-16. PubMed ID: 11554799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory agnosia and auditory spatial deficits following left hemispheric lesions: evidence for distinct processing pathways.
    Clarke S; Bellmann A; Meuli RA; Assal G; Steck AJ
    Neuropsychologia; 2000; 38(6):797-807. PubMed ID: 10689055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Processing of spectral and amplitude envelope of animal vocalizations in the human auditory cortex.
    Altmann CF; Gomes de Oliveira Júnior C; Heinemann L; Kaiser J
    Neuropsychologia; 2010 Aug; 48(10):2824-32. PubMed ID: 20493891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The contribution of the inferior parietal lobe to auditory spatial working memory.
    Alain C; He Y; Grady C
    J Cogn Neurosci; 2008 Feb; 20(2):285-95. PubMed ID: 18275335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human cortical representation of virtual auditory space: differences between sound azimuth and elevation.
    Fujiki N; Riederer KA; Jousmäki V; Mäkelä JP; Hari R
    Eur J Neurosci; 2002 Dec; 16(11):2207-13. PubMed ID: 12473088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Widespread and Opponent fMRI Signals Represent Sound Location in Macaque Auditory Cortex.
    Ortiz-Rios M; Azevedo FAC; Kuśmierek P; Balla DZ; Munk MH; Keliris GA; Logothetis NK; Rauschecker JP
    Neuron; 2017 Feb; 93(4):971-983.e4. PubMed ID: 28190642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.