These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 29643173)

  • 1. Mitochondrial ATP synthase dimers spontaneously associate due to a long-range membrane-induced force.
    Anselmi C; Davies KM; Faraldo-Gómez JD
    J Gen Physiol; 2018 May; 150(5):763-770. PubMed ID: 29643173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dimers of mitochondrial ATP synthase induce membrane curvature and self-assemble into rows.
    Blum TB; Hahn A; Meier T; Davies KM; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2019 Mar; 116(10):4250-4255. PubMed ID: 30760595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Helical arrays of U-shaped ATP synthase dimers form tubular cristae in ciliate mitochondria.
    Mühleip AW; Joos F; Wigge C; Frangakis AS; Kühlbrandt W; Davies KM
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):8442-7. PubMed ID: 27402755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interface mobility between monomers in dimeric bovine ATP synthase participates in the ultrastructure of inner mitochondrial membranes.
    Spikes TE; Montgomery MG; Walker JE
    Proc Natl Acad Sci U S A; 2021 Feb; 118(8):. PubMed ID: 33542155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How rotating ATP synthases can modulate membrane structure.
    Almendro-Vedia V; Natale P; Valdivieso González D; Lillo MP; Aragones JL; López-Montero I
    Arch Biochem Biophys; 2021 Sep; 708():108939. PubMed ID: 34052190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular organization of ATP synthase and complex I in whole mitochondria.
    Davies KM; Strauss M; Daum B; Kief JH; Osiewacz HD; Rycovska A; Zickermann V; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14121-6. PubMed ID: 21836051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent dissociation of ATP synthase dimers and loss of inner-membrane cristae in mitochondria.
    Daum B; Walter A; Horst A; Osiewacz HD; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15301-6. PubMed ID: 24006361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rows of ATP synthase dimers in native mitochondrial inner membranes.
    Buzhynskyy N; Sens P; Prima V; Sturgis JN; Scheuring S
    Biophys J; 2007 Oct; 93(8):2870-6. PubMed ID: 17557793
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae.
    Davies KM; Anselmi C; Wittig I; Faraldo-Gómez JD; Kühlbrandt W
    Proc Natl Acad Sci U S A; 2012 Aug; 109(34):13602-7. PubMed ID: 22864911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visualization of ATP synthase dimers in mitochondria by electron cryo-tomography.
    Davies KM; Daum B; Gold VA; Mühleip AW; Brandt T; Blum TB; Mills DJ; Kühlbrandt W
    J Vis Exp; 2014 Sep; (91):51228. PubMed ID: 25285856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of a Complete ATP Synthase Dimer Reveals the Molecular Basis of Inner Mitochondrial Membrane Morphology.
    Hahn A; Parey K; Bublitz M; Mills DJ; Zickermann V; Vonck J; Kühlbrandt W; Meier T
    Mol Cell; 2016 Aug; 63(3):445-56. PubMed ID: 27373333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Is there a relationship between the supramolecular organization of the mitochondrial ATP synthase and the formation of cristae?
    Giraud MF; Paumard P; Soubannier V; Vaillier J; Arselin G; Salin B; Schaeffer J; Brèthes D; di Rago JP; Velours J
    Biochim Biophys Acta; 2002 Sep; 1555(1-3):174-80. PubMed ID: 12206911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ATP synthase is involved in generating mitochondrial cristae morphology.
    Paumard P; Vaillier J; Coulary B; Schaeffer J; Soubannier V; Mueller DM; Brèthes D; di Rago JP; Velours J
    EMBO J; 2002 Feb; 21(3):221-30. PubMed ID: 11823415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiolipin affects the supramolecular organization of ATP synthase in mitochondria.
    Acehan D; Malhotra A; Xu Y; Ren M; Stokes DL; Schlame M
    Biophys J; 2011 May; 100(9):2184-92. PubMed ID: 21539786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TMEM70 forms oligomeric scaffolds within mitochondrial cristae promoting in situ assembly of mammalian ATP synthase proton channel.
    Bahri H; Buratto J; Rojo M; Dompierre JP; Salin B; Blancard C; Cuvellier S; Rose M; Ben Ammar Elgaaied A; Tetaud E; di Rago JP; Devin A; Duvezin-Caubet S
    Biochim Biophys Acta Mol Cell Res; 2021 Apr; 1868(4):118942. PubMed ID: 33359711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and function of mitochondrial F1F0-ATP synthases.
    Devenish RJ; Prescott M; Rodgers AJ
    Int Rev Cell Mol Biol; 2008; 267():1-58. PubMed ID: 18544496
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic coupling of the respiratory chain with ATP synthase, but not proton gradients, drives ATP production in cristae membranes.
    Toth A; Meyrat A; Stoldt S; Santiago R; Wenzel D; Jakobs S; von Ballmoos C; Ott M
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2412-2421. PubMed ID: 31964824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stepwise assembly of dimeric F(1)F(o)-ATP synthase in mitochondria involves the small F(o)-subunits k and i.
    Wagner K; Perschil I; Fichter CD; van der Laan M
    Mol Biol Cell; 2010 May; 21(9):1494-504. PubMed ID: 20219971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomic model for the dimeric F
    Guo H; Bueler SA; Rubinstein JL
    Science; 2017 Nov; 358(6365):936-940. PubMed ID: 29074581
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryo-EM of ATP synthases.
    Guo H; Rubinstein JL
    Curr Opin Struct Biol; 2018 Oct; 52():71-79. PubMed ID: 30240940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.