BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 29643183)

  • 1. The HIRAN domain of helicase-like transcription factor positions the DNA translocase motor to drive efficient DNA fork regression.
    Chavez DA; Greer BH; Eichman BF
    J Biol Chem; 2018 Jun; 293(22):8484-8494. PubMed ID: 29643183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HLTF's Ancient HIRAN Domain Binds 3' DNA Ends to Drive Replication Fork Reversal.
    Kile AC; Chavez DA; Bacal J; Eldirany S; Korzhnev DM; Bezsonova I; Eichman BF; Cimprich KA
    Mol Cell; 2015 Jun; 58(6):1090-100. PubMed ID: 26051180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of a Novel DNA-binding Domain of Helicase-like Transcription Factor (HLTF) and Its Functional Implication in DNA Damage Tolerance.
    Hishiki A; Hara K; Ikegaya Y; Yokoyama H; Shimizu T; Sato M; Hashimoto H
    J Biol Chem; 2015 May; 290(21):13215-23. PubMed ID: 25858588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TT-pocket/HIRAN: binding to 3'-terminus of DNA for recognition and processing of stalled replication forks.
    Masai H
    J Biochem; 2022 Jul; 172(2):57-60. PubMed ID: 35662338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of HIRAN domain of human HLTF bound to duplex DNA provides structural basis for DNA unwinding to initiate replication fork regression.
    Hishiki A; Sato M; Hashimoto H
    J Biochem; 2020 Jun; 167(6):597-602. PubMed ID: 31960921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the HLTF HIRAN domain and its functional implications in regression of a stalled replication fork.
    Hishiki A; Sato M; Hashimoto H
    Acta Crystallogr D Struct Biol; 2020 Aug; 76(Pt 8):729-735. PubMed ID: 32744255
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human HLTF mediates postreplication repair by its HIRAN domain-dependent replication fork remodelling.
    Achar YJ; Balogh D; Neculai D; Juhasz S; Morocz M; Gali H; Dhe-Paganon S; Venclovas Č; Haracska L
    Nucleic Acids Res; 2015 Dec; 43(21):10277-91. PubMed ID: 26350214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution NMR structure of the HLTF HIRAN domain: a conserved module in SWI2/SNF2 DNA damage tolerance proteins.
    Korzhnev DM; Neculai D; Dhe-Paganon S; Arrowsmith CH; Bezsonova I
    J Biomol NMR; 2016 Nov; 66(3):209-219. PubMed ID: 27771863
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DNA Sequence Specificity Reveals a Role of the HLTF HIRAN Domain in the Recognition of Trinucleotide Repeats.
    Dusek CO; Dash RC; McPherson KS; Calhoun JT; Bezsonova I; Korzhnev DM; Hadden MK
    Biochemistry; 2022 May; ():. PubMed ID: 35608245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SMARCAL1 catalyzes fork regression and Holliday junction migration to maintain genome stability during DNA replication.
    Bétous R; Mason AC; Rambo RP; Bansbach CE; Badu-Nkansah A; Sirbu BM; Eichman BF; Cortez D
    Genes Dev; 2012 Jan; 26(2):151-62. PubMed ID: 22279047
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movement of the RecG Motor Domain upon DNA Binding Is Required for Efficient Fork Reversal.
    Warren GM; Stein RA; Mchaourab HS; Eichman BF
    Int J Mol Sci; 2018 Oct; 19(10):. PubMed ID: 30301235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strand annealing and motor driven activities of SMARCAL1 and ZRANB3 are stimulated by RAD51 and the paralog complex.
    Halder S; Ranjha L; Taglialatela A; Ciccia A; Cejka P
    Nucleic Acids Res; 2022 Aug; 50(14):8008-8022. PubMed ID: 35801922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA damage tolerance pathway involving DNA polymerase ι and the tumor suppressor p53 regulates DNA replication fork progression.
    Hampp S; Kiessling T; Buechle K; Mansilla SF; Thomale J; Rall M; Ahn J; Pospiech H; Gottifredi V; Wiesmüller L
    Proc Natl Acad Sci U S A; 2016 Jul; 113(30):E4311-9. PubMed ID: 27407148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rad5 HIRAN domain: Structural insights into its interaction with ssDNA through molecular modeling approaches.
    Silva BM; Santos LH; de Almeida JPP; de Magalhães MTQ
    J Biomol Struct Dyn; 2023 Apr; 41(7):3062-3075. PubMed ID: 35249470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli PriA helicase: fork binding orients the helicase to unwind the lagging strand side of arrested replication forks.
    Jones JM; Nakai H
    J Mol Biol; 2001 Oct; 312(5):935-47. PubMed ID: 11580240
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoration of Replication Fork Stability in BRCA1- and BRCA2-Deficient Cells by Inactivation of SNF2-Family Fork Remodelers.
    Taglialatela A; Alvarez S; Leuzzi G; Sannino V; Ranjha L; Huang JW; Madubata C; Anand R; Levy B; Rabadan R; Cejka P; Costanzo V; Ciccia A
    Mol Cell; 2017 Oct; 68(2):414-430.e8. PubMed ID: 29053959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SMARCAL1 maintains telomere integrity during DNA replication.
    Poole LA; Zhao R; Glick GG; Lovejoy CA; Eischen CM; Cortez D
    Proc Natl Acad Sci U S A; 2015 Dec; 112(48):14864-9. PubMed ID: 26578802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ZATT-TOP2A-PICH Axis Drives Extensive Replication Fork Reversal to Promote Genome Stability.
    Tian T; Bu M; Chen X; Ding L; Yang Y; Han J; Feng XH; Xu P; Liu T; Ying S; Lei Y; Li Q; Huang J
    Mol Cell; 2021 Jan; 81(1):198-211.e6. PubMed ID: 33296677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time for remodeling: SNF2-family DNA translocases in replication fork metabolism and human disease.
    Joseph SA; Taglialatela A; Leuzzi G; Huang JW; Cuella-Martin R; Ciccia A
    DNA Repair (Amst); 2020 Nov; 95():102943. PubMed ID: 32971328
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functions of SMARCAL1, ZRANB3, and HLTF in maintaining genome stability.
    Poole LA; Cortez D
    Crit Rev Biochem Mol Biol; 2017 Dec; 52(6):696-714. PubMed ID: 28954549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.