These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection. Bradic J; Fan J; Wang W J R Stat Soc Series B Stat Methodol; 2011 Jun; 73(3):325-349. PubMed ID: 21589849 [TBL] [Abstract][Full Text] [Related]
26. Bayesian Criterion Based Variable Selection. Maity AK; Basu S; Ghosh S J R Stat Soc Ser C Appl Stat; 2021 Aug; 70(4):835-857. PubMed ID: 38863987 [TBL] [Abstract][Full Text] [Related]
27. ADAPTIVE ROBUST VARIABLE SELECTION. Fan J; Fan Y; Barut E Ann Stat; 2014 Feb; 42(1):324-351. PubMed ID: 25580039 [TBL] [Abstract][Full Text] [Related]
28. VARIABLE SELECTION IN LINEAR MIXED EFFECTS MODELS. Fan Y; Li R Ann Stat; 2012 Aug; 40(4):2043-2068. PubMed ID: 24850975 [TBL] [Abstract][Full Text] [Related]
29. Variable selection for partially linear models via Bayesian subset modeling with diffusing prior. Wang J; Cai X; Li R J Multivar Anal; 2021 May; 183():. PubMed ID: 33867594 [TBL] [Abstract][Full Text] [Related]
30. Variable selection for case-cohort studies with failure time outcome. Ni AI; Cai J; Zeng D Biometrika; 2016 Sep; 103(3):547-562. PubMed ID: 28529347 [TBL] [Abstract][Full Text] [Related]
31. Variable selection and estimation in generalized linear models with the seamless Li Z; Wang S; Lin X Can J Stat; 2012 Dec; 40(4):745-769. PubMed ID: 23519603 [TBL] [Abstract][Full Text] [Related]
32. VARIABLE SELECTION FOR REGRESSION MODELS WITH MISSING DATA. Garcia RI; Ibrahim JG; Zhu H Stat Sin; 2010 Jan; 20(1):149-165. PubMed ID: 20336190 [TBL] [Abstract][Full Text] [Related]
33. Gene Selection with Sequential Classification and Regression Tree Algorithm. Bastian CD; Rempala GA Biostat Bioinforma Biomath; 2011 Aug; 2(4):157-186. PubMed ID: 25364211 [TBL] [Abstract][Full Text] [Related]
34. Incorporating spatial structure into inclusion probabilities for Bayesian variable selection in generalized linear models with the spike-and-slab elastic net. Leach JM; Aban I; Yi N; J Stat Plan Inference; 2022 Mar; 217():141-152. PubMed ID: 36911105 [TBL] [Abstract][Full Text] [Related]
35. The cross-validated AUC for MCP-logistic regression with high-dimensional data. Jiang D; Huang J; Zhang Y Stat Methods Med Res; 2013 Oct; 22(5):505-18. PubMed ID: 22127580 [TBL] [Abstract][Full Text] [Related]
36. A generalized likelihood-based Bayesian approach for scalable joint regression and covariance selection in high dimensions. Samanta S; Khare K; Michailidis G Stat Comput; 2022 Jun; 32(3):. PubMed ID: 36713060 [TBL] [Abstract][Full Text] [Related]
37. The spike-and-slab lasso and scalable algorithm to accommodate multinomial outcomes in variable selection problems. Leach JM; Yi N; Aban I; The Alzheimer's Disease Neuroimaging Initiative J Appl Stat; 2024; 51(11):2039-2061. PubMed ID: 39157266 [TBL] [Abstract][Full Text] [Related]
38. Bayesian variable selection in linear quantile mixed models for longitudinal data with application to macular degeneration. Ji Y; Shi H PLoS One; 2020; 15(10):e0241197. PubMed ID: 33104698 [TBL] [Abstract][Full Text] [Related]
39. An Efficient Stochastic Search for Bayesian Variable Selection with High-Dimensional Correlated Predictors. Kwon D; Landi MT; Vannucci M; Issaq HJ; Prieto D; Pfeiffer RM Comput Stat Data Anal; 2011 Oct; 55(10):2807-2818. PubMed ID: 21686315 [TBL] [Abstract][Full Text] [Related]
40. Bayesian variable selection for binary outcomes in high-dimensional genomic studies using non-local priors. Nikooienejad A; Wang W; Johnson VE Bioinformatics; 2016 May; 32(9):1338-45. PubMed ID: 26740524 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]