These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29643771)

  • 1. Effective Subnetwork Topology for Synchronizing Interconnected Networks of Coupled Phase Oscillators.
    Yamamoto H; Kubota S; Shimizu FA; Hirano-Iwata A; Niwano M
    Front Comput Neurosci; 2018; 12():17. PubMed ID: 29643771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the topology of synchrony optimized networks of a Kuramoto-model with non-identical oscillators.
    Kelly D; Gottwald GA
    Chaos; 2011 Jun; 21(2):025110. PubMed ID: 21721788
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Path-dependent dynamics induced by rewiring networks of inertial oscillators.
    Qian W; Papadopoulos L; Lu Z; Kroma-Wiley KA; Pasqualetti F; Bassett DS
    Phys Rev E; 2022 Feb; 105(2-1):024304. PubMed ID: 35291167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS UNDER NETWORK MODIFICATIONS: PERTURBATION AND OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION.
    Taylor D; Skardal PS; Sun J
    SIAM J Appl Math; 2016; 76(5):1984-2008. PubMed ID: 27872501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synchronization of interconnected heterogeneous networks: The role of network sizes.
    Zhang H; Zhang W; Gao J
    Sci Rep; 2019 Apr; 9(1):6154. PubMed ID: 30992507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction of oscillator dynamics on complex networks to dynamics on complete graphs through virtual frequencies.
    Gao J; Efstathiou K
    Phys Rev E; 2020 Feb; 101(2-1):022302. PubMed ID: 32168684
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimal phase synchronization in networks of phase-coherent chaotic oscillators.
    Skardal PS; Sevilla-Escoboza R; Vera-Ávila VP; Buldú JM
    Chaos; 2017 Jan; 27(1):013111. PubMed ID: 28147498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A global synchronization theorem for oscillators on a random graph.
    Kassabov M; Strogatz SH; Townsend A
    Chaos; 2022 Sep; 32(9):093119. PubMed ID: 36182402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driven synchronization in random networks of oscillators.
    Hindes J; Myers CR
    Chaos; 2015 Jul; 25(7):073119. PubMed ID: 26232970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partial synchronization and community switching in phase-oscillator networks and its analysis based on a bidirectional, weighted chain of three oscillators.
    Kato M; Kori H
    Phys Rev E; 2023 Jan; 107(1-1):014210. PubMed ID: 36797893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A universal order parameter for synchrony in networks of limit cycle oscillators.
    Schröder M; Timme M; Witthaut D
    Chaos; 2017 Jul; 27(7):073119. PubMed ID: 28764398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dense networks that do not synchronize and sparse ones that do.
    Townsend A; Stillman M; Strogatz SH
    Chaos; 2020 Aug; 30(8):083142. PubMed ID: 32872810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaos in generically coupled phase oscillator networks with nonpairwise interactions.
    Bick C; Ashwin P; Rodrigues A
    Chaos; 2016 Sep; 26(9):094814. PubMed ID: 27781441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bifurcations in the Kuramoto model on graphs.
    Chiba H; Medvedev GS; Mizuhara MS
    Chaos; 2018 Jul; 28(7):073109. PubMed ID: 30070519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kuramoto model subject to subsystem resetting: How resetting a part of the system may synchronize the whole of it.
    Majumder R; Chattopadhyay R; Gupta S
    Phys Rev E; 2024 Jun; 109(6-1):064137. PubMed ID: 39020942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inferring the physical connectivity of complex networks from their functional dynamics.
    Ta HX; Yoon CN; Holm L; Han SK
    BMC Syst Biol; 2010 May; 4():70. PubMed ID: 20500902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stochastic synchronization of dynamics on the human connectome.
    Pang JC; Gollo LL; Roberts JA
    Neuroimage; 2021 Apr; 229():117738. PubMed ID: 33454400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interplay between excitability type and distributions of neuronal connectivity determines neuronal network synchronization.
    Mofakham S; Fink CG; Booth V; Zochowski MR
    Phys Rev E; 2016 Oct; 94(4-1):042427. PubMed ID: 27841569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of structural correlations and synchronization from adaptive rewiring in networks of Kuramoto oscillators.
    Papadopoulos L; Kim JZ; Kurths J; Bassett DS
    Chaos; 2017 Jul; 27(7):073115. PubMed ID: 28764402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synchronization by uncorrelated noise: interacting rhythms in interconnected oscillator networks.
    Meng JH; Riecke H
    Sci Rep; 2018 May; 8(1):6949. PubMed ID: 29725054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.