These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 29643771)

  • 21. Noise-induced synchrony of two-neuron motifs with asymmetric noise and uneven coupling.
    Jagdev G; Yu N
    Front Comput Neurosci; 2024; 18():1347748. PubMed ID: 38463242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Local synchronization in complex networks of coupled oscillators.
    Stout J; Whiteway M; Ott E; Girvan M; Antonsen TM
    Chaos; 2011 Jun; 21(2):025109. PubMed ID: 21721787
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kuramoto model simulation of neural hubs and dynamic synchrony in the human cerebral connectome.
    Schmidt R; LaFleur KJ; de Reus MA; van den Berg LH; van den Heuvel MP
    BMC Neurosci; 2015 Sep; 16():54. PubMed ID: 26329640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of intermodular connection on fast sparse synchronization in clustered small-world neural networks.
    Kim SY; Lim W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052716. PubMed ID: 26651732
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nestedness interacts with subnetwork structures and interconnection patterns to affect community dynamics in ecological multilayer networks.
    Yan C
    J Anim Ecol; 2022 Apr; 91(4):738-751. PubMed ID: 35061910
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hierarchical synchrony of phase oscillators in modular networks.
    Skardal PS; Restrepo JG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016208. PubMed ID: 22400644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phase synchronization and intermittent behavior in healthy and Alzheimer-affected human-brain-based neural network.
    Budzinski RC; Boaretto BRR; Prado TL; Lopes SR
    Phys Rev E; 2019 Feb; 99(2-1):022402. PubMed ID: 30934289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiplexing topologies and time scales: The gains and losses of synchrony.
    Makovkin S; Kumar A; Zaikin A; Jalan S; Ivanchenko M
    Phys Rev E; 2017 Nov; 96(5-1):052214. PubMed ID: 29347745
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synchronization of three electrochemical oscillators: From local to global coupling.
    Liu Y; Sebek M; Mori F; Kiss IZ
    Chaos; 2018 Apr; 28(4):045104. PubMed ID: 31906643
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synchronization through frequency shuffling.
    Aravind M; Pachaulee V; Sarkar M; Tiwari I; Gupta S; Parmananda P
    Phys Rev E; 2024 May; 109(5):L052302. PubMed ID: 38907503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spatiotemporally flexible subnetworks reveal the quasi-cyclic nature of integration and segregation in the human brain.
    Strindberg M; Fransson P; Cabral J; Ådén U
    Neuroimage; 2021 Oct; 239():118287. PubMed ID: 34153450
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Linear reformulation of the Kuramoto model of self-synchronizing coupled oscillators.
    Roberts DC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Mar; 77(3 Pt 1):031114. PubMed ID: 18517336
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators.
    Aktay S; Sander LM; Zochowski M
    bioRxiv; 2024 Feb; ():. PubMed ID: 38464134
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Route to synchronization in coupled phase oscillators with frequency-dependent coupling: Explosive or continuous?
    Kumar M; Gupta S
    Phys Rev E; 2022 Oct; 106(4-1):044310. PubMed ID: 36397479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The number of synaptic inputs and the synchrony of large, sparse neuronal networks.
    Golomb D; Hansel D
    Neural Comput; 2000 May; 12(5):1095-139. PubMed ID: 10905810
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Perturbation analysis of complete synchronization in networks of phase oscillators.
    Tönjes R; Blasius B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026202. PubMed ID: 19792226
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Complex dynamics in adaptive phase oscillator networks.
    Jüttner B; Martens EA
    Chaos; 2023 May; 33(5):. PubMed ID: 37133924
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robustness of a network formed by n interdependent networks with a one-to-one correspondence of dependent nodes.
    Gao J; Buldyrev SV; Havlin S; Stanley HE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066134. PubMed ID: 23005189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimal synchronization of directed complex networks.
    Skardal PS; Taylor D; Sun J
    Chaos; 2016 Sep; 26(9):094807. PubMed ID: 27781463
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phase oscillators in modular networks: The effect of nonlocal coupling.
    Ujjwal SR; Punetha N; Ramaswamy R
    Phys Rev E; 2016 Jan; 93(1):012207. PubMed ID: 26871073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.