These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 29643987)
1. Proteomic analysis defines kinase taxonomies specific for subtypes of breast cancer. Collins KAL; Stuhlmiller TJ; Zawistowski JS; East MP; Pham TT; Hall CR; Goulet DR; Bevill SM; Angus SP; Velarde SH; Sciaky N; Oprea TI; Graves LM; Johnson GL; Gomez SM Oncotarget; 2018 Mar; 9(21):15480-15497. PubMed ID: 29643987 [TBL] [Abstract][Full Text] [Related]
2. Assessing adaptation of the cancer kinome in response to targeted therapies. Zawistowski JS; Graves LM; Johnson GL Biochem Soc Trans; 2014 Aug; 42(4):765-9. PubMed ID: 25109955 [TBL] [Abstract][Full Text] [Related]
3. Application of multiplexed kinase inhibitor beads to study kinome adaptations in drug-resistant leukemia. Cooper MJ; Cox NJ; Zimmerman EI; Dewar BJ; Duncan JS; Whittle MC; Nguyen TA; Jones LS; Ghose Roy S; Smalley DM; Kuan PF; Richards KL; Christopherson RI; Jin J; Frye SV; Johnson GL; Baldwin AS; Graves LM PLoS One; 2013; 8(6):e66755. PubMed ID: 23826126 [TBL] [Abstract][Full Text] [Related]
4. Targeting the Breast Cancer Kinome. Miller SM; Goulet DR; Johnson GL J Cell Physiol; 2017 Jan; 232(1):53-60. PubMed ID: 27186656 [TBL] [Abstract][Full Text] [Related]
5. Integrating proteomic and phosphoproteomic data for pathway analysis in breast cancer. Ren J; Wang B; Li J BMC Syst Biol; 2018 Dec; 12(Suppl 8):130. PubMed ID: 30577793 [TBL] [Abstract][Full Text] [Related]
6. Kinome inhibition states and multiomics data enable prediction of cell viability in diverse cancer types. Berginski ME; Joisa CU; Golitz BT; Gomez SM PLoS Comput Biol; 2023 Feb; 19(2):e1010888. PubMed ID: 36809237 [TBL] [Abstract][Full Text] [Related]
8. Adaptive chromatin remodeling and transcriptional changes of the functional kinome in tumor cells in response to targeted kinase inhibition. East MP; Johnson GL J Biol Chem; 2022 Feb; 298(2):101525. PubMed ID: 34958800 [TBL] [Abstract][Full Text] [Related]
9. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities. Lanning NJ; Castle JP; Singh SJ; Leon AN; Tovar EA; Sanghera A; MacKeigan JP; Filipp FV; Graveel CR Cancer Metab; 2017; 5():6. PubMed ID: 28852500 [TBL] [Abstract][Full Text] [Related]
10. Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. Kao J; Salari K; Bocanegra M; Choi YL; Girard L; Gandhi J; Kwei KA; Hernandez-Boussard T; Wang P; Gazdar AF; Minna JD; Pollack JR PLoS One; 2009 Jul; 4(7):e6146. PubMed ID: 19582160 [TBL] [Abstract][Full Text] [Related]
11. Resistance to BET Bromodomain Inhibitors Is Mediated by Kinome Reprogramming in Ovarian Cancer. Kurimchak AM; Shelton C; Duncan KE; Johnson KJ; Brown J; O'Brien S; Gabbasov R; Fink LS; Li Y; Lounsbury N; Abou-Gharbia M; Childers WE; Connolly DC; Chernoff J; Peterson JR; Duncan JS Cell Rep; 2016 Aug; 16(5):1273-1286. PubMed ID: 27452461 [TBL] [Abstract][Full Text] [Related]
12. Multipronged quantitative proteomics reveals serum proteome alterations in breast cancer intrinsic subtypes. Gajbhiye A; Dabhi R; Taunk K; Jagadeeshaprasad MG; RoyChoudhury S; Mane A; Bayatigeri S; Chaudhury K; Santra MK; Rapole S J Proteomics; 2017 Jun; 163():1-13. PubMed ID: 28495502 [TBL] [Abstract][Full Text] [Related]
13. Integrated analysis of breast cancer cell lines reveals unique signaling pathways. Heiser LM; Wang NJ; Talcott CL; Laderoute KR; Knapp M; Guan Y; Hu Z; Ziyad S; Weber BL; Laquerre S; Jackson JR; Wooster RF; Kuo WL; Gray JW; Spellman PT Genome Biol; 2009; 10(3):R31. PubMed ID: 19317917 [TBL] [Abstract][Full Text] [Related]
14. Kinome profiling reveals breast cancer heterogeneity and identifies targeted therapeutic opportunities for triple negative breast cancer. Al-Ejeh F; Miranda M; Shi W; Simpson PT; Song S; Vargas AC; Saunus JM; Smart CE; Mariasegaram M; Wiegmans AP; Chenevix-Trench G; Lakhani SR; Khanna KK Oncotarget; 2014 May; 5(10):3145-58. PubMed ID: 24762669 [TBL] [Abstract][Full Text] [Related]
15. Large-scale proteomics analysis of the human kinome. Oppermann FS; Gnad F; Olsen JV; Hornberger R; Greff Z; Kéri G; Mann M; Daub H Mol Cell Proteomics; 2009 Jul; 8(7):1751-64. PubMed ID: 19369195 [TBL] [Abstract][Full Text] [Related]
16. Proteomics-based interrogation of the kinome and its implications for precision oncology. Lim Kam Sian TCC; Chüeh AC; Daly RJ Proteomics; 2021 Sep; 21(17-18):e2000161. PubMed ID: 33547865 [TBL] [Abstract][Full Text] [Related]
17. Is There a Benefit of HER2-Positive Breast Cancer Subtype Determination in Clinical Practice? Kolářová I; Vaňásek J; Odrážka K; Dušek L; Šinkorová Z; Hlávka A; Štuk J; Stejskal J; Dvořáková D; Sákra L; Mergancová J; Vilasová Z Klin Onkol; 2019; 32(1):25-30. PubMed ID: 30764626 [TBL] [Abstract][Full Text] [Related]
18. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Carey LA; Dees EC; Sawyer L; Gatti L; Moore DT; Collichio F; Ollila DW; Sartor CI; Graham ML; Perou CM Clin Cancer Res; 2007 Apr; 13(8):2329-34. PubMed ID: 17438091 [TBL] [Abstract][Full Text] [Related]
19. Dynamic reprogramming of the kinome in response to targeted MEK inhibition in triple-negative breast cancer. Duncan JS; Whittle MC; Nakamura K; Abell AN; Midland AA; Zawistowski JS; Johnson NL; Granger DA; Jordan NV; Darr DB; Usary J; Kuan PF; Smalley DM; Major B; He X; Hoadley KA; Zhou B; Sharpless NE; Perou CM; Kim WY; Gomez SM; Chen X; Jin J; Frye SV; Earp HS; Graves LM; Johnson GL Cell; 2012 Apr; 149(2):307-21. PubMed ID: 22500798 [TBL] [Abstract][Full Text] [Related]
20. Claudin-low breast cancers: clinical, pathological, molecular and prognostic characterization. Sabatier R; Finetti P; Guille A; Adelaide J; Chaffanet M; Viens P; Birnbaum D; Bertucci F Mol Cancer; 2014 Oct; 13():228. PubMed ID: 25277734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]